← Back to list

streamable-http-mcp-server
by syeda-hoorain-ali
TaskFlow is an innovative todo application that demonstrates the complete evolution of software development from a simple in-memory Python console app to a sophisticated, AI-powered, cloud-native application deployed on Kubernetes.
⭐ 0🍴 0📅 Jan 21, 2026
SKILL.md
name: streamable-http-mcp-server description: Creates and configures Streamable HTTP Model Context Protocol (MCP) server connections for OpenAI Agents SDK
Streamable HTTP MCP Server Skill
This skill helps create and configure Streamable HTTP Model Context Protocol (MCP) server connections for OpenAI Agents SDK.
Purpose
- Create MCPServerStreamableHttp configurations
- Configure HTTP connection parameters and authentication
- Set up caching and retry mechanisms
- Connect to HTTP-based MCP servers with direct connection management
MCPServerStreamableHttp Constructor Parameters
- params (MCPServerStreamableHttpParams): Connection parameters for the server
- url (str): The URL of the server
- headers (dict[str, str], optional): The headers to send to the server
- timeout (timedelta | float, optional): The timeout for the HTTP request (default: 5 seconds)
- sse_read_timeout (timedelta | float, optional): The timeout for the SSE connection (default: 5 minutes)
- terminate_on_close (bool, optional): Whether to terminate on close
- httpx_client_factory (HttpClientFactory, optional): Custom HTTP client factory for configuring httpx.AsyncClient behavior
- cache_tools_list (bool): Whether to cache the list of available tools (default: False)
- name (string | None): A readable name for the server (default: None, auto-generated from URL)
- client_session_timeout_seconds (float | None): Read timeout for the MCP ClientSession (default: 5)
- tool_filter (ToolFilter): The tool filter to use for filtering tools (default: None)
- use_structured_content (bool): Whether to use tool_result.structured_content when calling an MCP tool (default: False)
- max_retry_attempts (int): Number of times to retry failed list_tools/call_tool calls (default: 0)
- retry_backoff_seconds_base (float): The base delay, in seconds, for exponential backoff between retries (default: 1.0)
- message_handler (MessageHandlerFnT | None): Optional handler invoked for session messages (default: None)
Usage Context
Use this skill when:
- Managing HTTP connections yourself
- Running servers locally or remotely with direct connection management
- Needing to keep latency low with your own infrastructure
- Wanting to run the server inside your own infrastructure
Basic Example
import asyncio
import os
from agents import Agent, Runner
from agents.mcp import MCPServerStreamableHttp
from agents.model_settings import ModelSettings
async def main() -> None:
token = os.environ["MCP_SERVER_TOKEN"]
async with MCPServerStreamableHttp(
name="Streamable HTTP Python Server",
params={
"url": "http://localhost:8000/mcp",
"headers": {"Authorization": f"Bearer {token}"},
"timeout": 10,
},
cache_tools_list=True,
max_retry_attempts=3,
) as server:
agent = Agent(
name="Assistant",
instructions="Use the MCP tools to answer the questions.",
mcp_servers=[server],
model_settings=ModelSettings(tool_choice="required"),
)
result = await Runner.run(agent, "Add 7 and 22.")
print(result.final_output)
asyncio.run(main())
Score
Total Score
75/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon
