
hosted-mcp-server
by syeda-hoorain-ali
TaskFlow is an innovative todo application that demonstrates the complete evolution of software development from a simple in-memory Python console app to a sophisticated, AI-powered, cloud-native application deployed on Kubernetes.
SKILL.md
name: hosted-mcp-server description: Creates and configures hosted Model Context Protocol (MCP) server connections for OpenAI Agents SDK
Hosted MCP Server Skill
This skill helps create and configure hosted Model Context Protocol (MCP) server connections for OpenAI Agents SDK.
Purpose
- Create HostedMCPTool configurations
- Configure server parameters and authentication
- Set up approval flows for sensitive operations
- Connect to publicly accessible MCP servers
HostedMCPTool Properties
- tool_config (Mcp object/dict): The MCP tool config, which includes the server URL and other settings
- on_approval_request (function): An optional function that will be called if approval is requested for an MCP tool. The function takes an MCPToolApprovalRequest object as input and returns a dictionary with:
- approve (bool): Whether to approve the tool call
- reason (string, optional): An optional reason, if rejected
- The function can be synchronous or asynchronous (return type can be awaitable)
Mcp Object Properties (for tool_config)
- type (string, required): The type of the MCP tool. Always "mcp"
- server_label (string, required): A label for this MCP server, used to identify it in tool calls
- server_url (string): The URL for the MCP server (one of server_url or connector_id must be provided)
- server_description (string): Optional description of the MCP server, used to provide more context
- connector_id (string): Identifier for service connectors (one of server_url or connector_id must be provided)
- authorization (string): OAuth access token that can be used with a remote MCP server
- headers (dict): Optional HTTP headers to send to the MCP server (for authentication or other purposes)
- allowed_tools (McpAllowedTools): List of allowed tool names or a filter object
- require_approval (McpRequireApproval): Specify which of the MCP server's tools require approval
MCPToolApprovalRequest Properties
- ctx_wrapper (RunContextWrapper): The run context
- data (McpApprovalRequest): The data from the MCP tool approval request
Connector IDs Supported
- connector_dropbox
- connector_gmail
- connector_googlecalendar
- connector_googledrive
- connector_microsoftteams
- connector_outlookcalendar
- connector_outlookemail
- connector_sharepoint
Approval Options
- "always": Always require approval
- "never": Never require approval
- Object mapping: Specific approval policies per tool
Usage Context
Use this skill when:
- Connecting to publicly accessible MCP servers
- Using OpenAI's infrastructure for tool execution
- Working with service connectors
- Needing hosted tool execution without local callbacks
Basic Example
import asyncio
from agents import Agent, HostedMCPTool, Runner
async def main() -> None:
agent = Agent(
name="Assistant",
tools=[
HostedMCPTool(
tool_config={
"type": "mcp",
"server_label": "gitmcp",
"server_url": "https://gitmcp.io/openai/codex",
"require_approval": "never",
}
)
],
)
result = await Runner.run(agent, "Which language is this repository written in?")
print(result.final_output)
asyncio.run(main())
Streaming Example
result = Runner.run_streamed(agent, "Summarise this repository's top languages")
async for event in result.stream_events():
if event.type == "run_item_stream_event":
print(f"Received: {event.item}")
print(result.final_output)
Approval Flow Example
Use when servers can perform sensitive operations that require human or programmatic approval before execution. Configure require_approval with policies ("always", "never") or a dict mapping tool names to policies.
from agents import Agent, HostedMCPTool, MCPToolApprovalFunctionResult, MCPToolApprovalRequest
SAFE_TOOLS = {"read_project_metadata"}
def approve_tool(request: MCPToolApprovalRequest) -> MCPToolApprovalFunctionResult:
if request.data.name in SAFE_TOOLS:
return {"approve": True}
return {"approve": False, "reason": "Escalate to a human reviewer"}
agent = Agent(
name="Assistant",
tools=[
HostedMCPTool(
tool_config={
"type": "mcp",
"server_label": "gitmcp",
"server_url": "https://gitmcp.io/openai/codex",
"require_approval": "always",
},
on_approval_request=approve_tool,
)
],
)
Connector-Backed Example
Use for OpenAI connectors instead of specifying a server_url. The Responses API handles authentication and exposes the connector's tools.
import os
HostedMCPTool(
tool_config={
"type": "mcp",
"server_label": "google_calendar",
"connector_id": "connector_googlecalendar",
"authorization": os.environ["GOOGLE_CALENDAR_AUTHORIZATION"],
"require_approval": "never",
}
)
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
