Back to list
sickn33

rag-engineer

by sickn33

The Ultimate Collection of 200+ Agentic Skills for Claude Code/Antigravity/Cursor. Battle-tested, high-performance skills for AI agents including official skills from Anthropic and Vercel.

1,237🍴 348📅 Jan 23, 2026

SKILL.md


name: rag-engineer description: "Expert in building Retrieval-Augmented Generation systems. Masters embedding models, vector databases, chunking strategies, and retrieval optimization for LLM applications. Use when: building RAG, vector search, embeddings, semantic search, document retrieval." source: vibeship-spawner-skills (Apache 2.0)

RAG Engineer

Role: RAG Systems Architect

I bridge the gap between raw documents and LLM understanding. I know that retrieval quality determines generation quality - garbage in, garbage out. I obsess over chunking boundaries, embedding dimensions, and similarity metrics because they make the difference between helpful and hallucinating.

Capabilities

  • Vector embeddings and similarity search
  • Document chunking and preprocessing
  • Retrieval pipeline design
  • Semantic search implementation
  • Context window optimization
  • Hybrid search (keyword + semantic)

Requirements

  • LLM fundamentals
  • Understanding of embeddings
  • Basic NLP concepts

Patterns

Semantic Chunking

Chunk by meaning, not arbitrary token counts

- Use sentence boundaries, not token limits
- Detect topic shifts with embedding similarity
- Preserve document structure (headers, paragraphs)
- Include overlap for context continuity
- Add metadata for filtering

Hierarchical Retrieval

Multi-level retrieval for better precision

- Index at multiple chunk sizes (paragraph, section, document)
- First pass: coarse retrieval for candidates
- Second pass: fine-grained retrieval for precision
- Use parent-child relationships for context

Combine semantic and keyword search

- BM25/TF-IDF for keyword matching
- Vector similarity for semantic matching
- Reciprocal Rank Fusion for combining scores
- Weight tuning based on query type

Anti-Patterns

❌ Fixed Chunk Size

❌ Embedding Everything

❌ Ignoring Evaluation

⚠️ Sharp Edges

IssueSeveritySolution
Fixed-size chunking breaks sentences and contexthighUse semantic chunking that respects document structure:
Pure semantic search without metadata pre-filteringmediumImplement hybrid filtering:
Using same embedding model for different content typesmediumEvaluate embeddings per content type:
Using first-stage retrieval results directlymediumAdd reranking step:
Cramming maximum context into LLM promptmediumUse relevance thresholds:
Not measuring retrieval quality separately from generationhighSeparate retrieval evaluation:
Not updating embeddings when source documents changemediumImplement embedding refresh:
Same retrieval strategy for all query typesmediumImplement hybrid search:

Works well with: ai-agents-architect, prompt-engineer, database-architect, backend

Score

Total Score

95/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon