Back to list
rjmurillo

prompt-engineer

by rjmurillo

Multi-agent system for software development

5🍴 0📅 Jan 24, 2026

SKILL.md


name: prompt-engineer description: Optimize system prompts for Claude Code agents using proven prompt engineering patterns. Use when users request prompt improvement, optimization, or refinement for agent workflows, tool instructions, or system behaviors. license: MIT metadata: version: 1.0.0 model: claude-sonnet-4-5

Prompt Optimizer

Optimizes system prompts by applying research-backed prompt engineering patterns. Human-in-the-loop phases: understand, plan, propose changes, receive approval, then integrate.

Purpose and Success Criteria

A well-optimized prompt achieves:

  1. Behavioral clarity: Agent knows exactly what to do in common cases and edge cases
  2. Appropriate scope: Complex tasks get decomposition; simple tasks don't trigger overthinking
  3. Grounded changes: Every modification traces to a specific pattern with documented impact

Optimization is complete when:

  • Every change has explicit pattern attribution from the reference document
  • No section contradicts another section
  • The prompt matches its operating context (tool-use vs. conversational, token constraints)
  • Human has approved both section-level changes and full integration

When to Use This Skill

Use when the user provides a prompt and wants it improved, refined, or reviewed for best practices.

Do NOT use for:

  • Writing prompts from scratch (different skill)
  • Prompts that are already working well and user just wants validation
  • Non-prompt content (documentation, code, etc.)

Required Resources

Before ANY analysis, read the appropriate pattern reference(s):

Single-Turn Reference (Always Read)

Read references/prompt-engineering-single-turn.md

Contains: Technique Selection Guide table, Quick Reference principles, domain-organized techniques with citations, Anti-Patterns section.

Multi-Turn Reference (Conditional)

Read references/prompt-engineering-multi-turn.md

Read ONLY when the prompt involves:

  • Multi-turn flows (iterative refinement, conversation chains)
  • Multi-agent / sub-agent orchestration

Skip for:

  • Static system prompts executed in a single LLM call
  • Tool instructions or one-shot prompts

Workflow Reference

Read references/workflow.md

Contains: Detailed Phase 0-4 workflows, visual card template, completion checkpoint.

Quick Process

┌─────────────────────────────────────────────────────────────────┐
│ 1. READ THE REFERENCE(S)                                        │
│    - Always: references/prompt-engineering-single-turn.md       │
│    - If multi-turn/multi-agent: also read multi-turn reference  │
├─────────────────────────────────────────────────────────────────┤
│ 2. UNDERSTAND THE PROMPT (Phase 1)                              │
│    - Operating context (single-shot? tool-use? constraints?)    │
│    - Current state (working? unclear? missing?)                 │
│    - Document specific problems with quoted prompt text         │
├─────────────────────────────────────────────────────────────────┤
│ 3. PLAN WITH VISUAL CARDS (Phase 2)                             │
│    - Present each change as a visual card with:                 │
│      SCOPE → PROBLEM → TECHNIQUE → BEFORE/AFTER                 │
│    - Quote trigger conditions from reference                    │
│    - ⚠️  WAIT FOR USER APPROVAL before proceeding               │
├─────────────────────────────────────────────────────────────────┤
│ 4. EXECUTE APPROVED CHANGES (Phase 3)                           │
│    - Apply the BEFORE → AFTER transformations                   │
├─────────────────────────────────────────────────────────────────┤
│ 5. INTEGRATE AND VERIFY QUALITY (Phase 4)                       │
│    - Check cross-section coherence                              │
│    - Final anti-pattern check                                   │
│    - Present complete optimized prompt                          │
└─────────────────────────────────────────────────────────────────┘

Triage (Phase 0)

Simple prompts (use lightweight process):

  • Under 20 lines
  • Single clear purpose
  • No conditional logic

Complex prompts (use full process):

  • Multiple sections serving different functions
  • Conditional behaviors or rule hierarchies
  • Tool orchestration or multi-step workflows

Core Quality Principles

  1. Quote before deciding: Every technique selection must quote the reference's trigger condition.
  2. Open verification questions: Ask "What behavior will this produce?" not "Is this correct?"
  3. Approval happens once, upfront: The visual card format in Phase 2 shows full impact.
  4. Preserve what works: Optimization means improving problems, not rewriting everything.

Completion Checkpoint

Before presenting the final prompt, verify:

  • Phase 2 plan used visual card format with BEFORE/AFTER
  • Phase 2 plan quoted trigger conditions from reference
  • Phase 2 plan was approved by user before Phase 3
  • No technique applied without matching trigger condition
  • Stacking compatibility checked; no conflicts
  • Anti-patterns section consulted; none introduced
  • Emphasis markers used sparingly (≤3 highest-level)

References

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon