
tldr-code
by parcadei
Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.
Use Cases
MCP Server Integration
AI tool integration using Model Context Protocol. Using tldr-code.
API Integration
Easily build API integrations with external services.
Data Synchronization
Automatically sync data between multiple systems.
SKILL.md
name: tldr-code description: Token-efficient code analysis via 5-layer stack (AST, Call Graph, CFG, DFG, PDG). 95% token savings. allowed-tools: [Bash] keywords: [debug, refactor, understand, complexity, "call graph", "data flow", "what calls", "how complex", search, explore, analyze, dead code, architecture, imports]
TLDR-Code: Complete Reference
Token-efficient code analysis. 95% savings vs raw file reads.
Quick Reference
| Task | Command |
|---|---|
| File tree | tldr tree src/ |
| Code structure | tldr structure . --lang python |
| Search code | tldr search "pattern" . |
| Call graph | tldr calls src/ |
| Who calls X? | tldr impact func_name . |
| Control flow | tldr cfg file.py func |
| Data flow | tldr dfg file.py func |
| Program slice | tldr slice file.py func 42 |
| Dead code | tldr dead src/ |
| Architecture | tldr arch src/ |
| Imports | tldr imports file.py |
| Who imports X? | tldr importers module_name . |
| Affected tests | tldr change-impact --git |
| Type check | tldr diagnostics file.py |
| Semantic search | tldr semantic search "auth flow" |
The 5-Layer Stack
Layer 1: AST ~500 tokens Function signatures, imports
Layer 2: Call Graph +440 tokens What calls what (cross-file)
Layer 3: CFG +110 tokens Complexity, branches, loops
Layer 4: DFG +130 tokens Variable definitions/uses
Layer 5: PDG +150 tokens Dependencies, slicing
───────────────────────────────────────────────────────────────
Total: ~1,200 tokens vs 23,000 raw = 95% savings
CLI Commands
Navigation
# File tree
tldr tree [path]
tldr tree src/ --ext .py .ts # Filter extensions
tldr tree . --show-hidden # Include hidden files
# Code structure (codemaps)
tldr structure [path] --lang python
tldr structure src/ --max 100 # Max files to analyze
Search
# Text search
tldr search <pattern> [path]
tldr search "def process" src/
tldr search "class.*Error" . --ext .py
tldr search "TODO" . -C 3 # 3 lines context
tldr search "func" . --max 50 # Limit results
# Semantic search (natural language)
tldr semantic search "authentication flow"
tldr semantic search "error handling" --k 10
tldr semantic search "database queries" --expand # Include call graph
File Analysis
# Full file info
tldr extract <file>
tldr extract src/api.py
tldr extract src/api.py --class UserService # Filter to class
tldr extract src/api.py --function process # Filter to function
tldr extract src/api.py --method UserService.get # Filter to method
# Relevant context (follows call graph)
tldr context <entry> --project <path>
tldr context main --project src/ --depth 3
tldr context UserService.create --project . --lang typescript
Flow Analysis
# Control flow graph (complexity)
tldr cfg <file> <function>
tldr cfg src/processor.py process_data
# Returns: cyclomatic complexity, blocks, branches, loops
# Data flow graph (variable tracking)
tldr dfg <file> <function>
tldr dfg src/processor.py process_data
# Returns: where variables are defined, read, modified
# Program slice (what affects line X)
tldr slice <file> <function> <line>
tldr slice src/processor.py process_data 42
tldr slice src/processor.py process_data 42 --direction forward
tldr slice src/processor.py process_data 42 --var result
Codebase Analysis
# Build cross-file call graph
tldr calls [path]
tldr calls src/ --lang python
# Reverse call graph (who calls this function?)
tldr impact <func> [path]
tldr impact process_data src/ --depth 5
tldr impact authenticate . --file auth # Filter by file
# Find dead/unreachable code
tldr dead [path]
tldr dead src/ --entry main cli test_ # Specify entry points
tldr dead . --lang typescript
# Detect architectural layers
tldr arch [path]
tldr arch src/ --lang python
# Returns: entry layer, middle layer, leaf layer, circular deps
Import Analysis
# Parse imports from file
tldr imports <file>
tldr imports src/api.py
tldr imports src/api.ts --lang typescript
# Reverse import lookup (who imports this module?)
tldr importers <module> [path]
tldr importers datetime src/
tldr importers UserService . --lang typescript
Quality & Testing
# Type check + lint
tldr diagnostics <file|path>
tldr diagnostics src/api.py
tldr diagnostics . --project # Whole project
tldr diagnostics src/ --no-lint # Type check only
tldr diagnostics src/ --format text # Human-readable
# Find affected tests
tldr change-impact [files...]
tldr change-impact # Auto-detect (session/git)
tldr change-impact src/api.py # Explicit files
tldr change-impact --session # Session-modified files
tldr change-impact --git # Git diff files
tldr change-impact --git --git-base main # Diff against branch
tldr change-impact --run # Actually run affected tests
Caching
# Pre-build call graph cache
tldr warm <path>
tldr warm src/ --lang python
tldr warm . --background # Build in background
# Build semantic index (one-time)
tldr semantic index [path]
tldr semantic index . --lang python
tldr semantic index . --model all-MiniLM-L6-v2 # Smaller model (80MB)
Daemon (Faster Queries)
The daemon holds indexes in memory for instant repeated queries.
Daemon Commands
# Start daemon (backgrounds automatically)
tldr daemon start
tldr daemon start --project /path/to/project
# Check status
tldr daemon status
# Stop daemon
tldr daemon stop
# Send raw command
tldr daemon query ping
tldr daemon query status
# Notify file change (for hooks)
tldr daemon notify <file>
tldr daemon notify src/api.py
Daemon Features
| Feature | Description |
|---|---|
| Auto-shutdown | 30 minutes idle |
| Query caching | SalsaDB memoization |
| Content hashing | Skip unchanged files |
| Dirty tracking | Incremental re-indexing |
| Cross-platform | Unix sockets / Windows TCP |
Daemon Socket Protocol
Send JSON to socket, receive JSON response:
// Request
{"cmd": "search", "pattern": "process", "max_results": 10}
// Response
{"status": "ok", "results": [...]}
All 22 daemon commands:
ping, status, shutdown, search, extract, impact, dead, arch,
cfg, dfg, slice, calls, warm, semantic, tree, structure,
context, imports, importers, notify, diagnostics, change_impact
Semantic Search (P6)
Natural language code search using embeddings.
Setup
# Build index (downloads model on first run)
tldr semantic index .
# Default model: bge-large-en-v1.5 (1.3GB, best quality)
# Smaller model: all-MiniLM-L6-v2 (80MB, faster)
tldr semantic index . --model all-MiniLM-L6-v2
Search
tldr semantic search "authentication flow"
tldr semantic search "error handling patterns" --k 10
tldr semantic search "database connection" --expand # Follow call graph
Configuration
In .claude/settings.json:
{
"semantic_search": {
"enabled": true,
"auto_reindex_threshold": 20,
"model": "bge-large-en-v1.5"
}
}
Languages Supported
| Language | AST | Call Graph | CFG | DFG | PDG |
|---|---|---|---|---|---|
| Python | Yes | Yes | Yes | Yes | Yes |
| TypeScript | Yes | Yes | Yes | Yes | Yes |
| JavaScript | Yes | Yes | Yes | Yes | Yes |
| Go | Yes | Yes | Yes | Yes | Yes |
| Rust | Yes | Yes | Yes | Yes | Yes |
| Java | Yes | Yes | - | - | - |
| C/C++ | Yes | Yes | - | - | - |
| Ruby | Yes | - | - | - | - |
| PHP | Yes | - | - | - | - |
| Kotlin | Yes | - | - | - | - |
| Swift | Yes | - | - | - | - |
| C# | Yes | - | - | - | - |
| Scala | Yes | - | - | - | - |
| Lua | Yes | - | - | - | - |
| Elixir | Yes | - | - | - | - |
Ignore Patterns
TLDR respects .tldrignore (gitignore syntax):
# .tldrignore
.venv/
__pycache__/
node_modules/
*.min.js
dist/
First run creates .tldrignore with sensible defaults.
Use --no-ignore to bypass.
When to Use TLDR vs Other Tools
| Task | Use TLDR | Use Grep |
|---|---|---|
| Find function definition | tldr extract file --function X | - |
| Search code patterns | tldr search "pattern" | - |
| String literal search | - | grep "literal" |
| Config values | - | grep "KEY=" |
| Cross-file calls | tldr calls | - |
| Reverse deps | tldr impact func | - |
| Complexity analysis | tldr cfg file func | - |
| Variable tracking | tldr dfg file func | - |
| Natural language query | tldr semantic search | - |
Python API
from tldr.api import (
# L1: AST
extract_file, extract_functions, get_imports,
# L2: Call Graph
build_project_call_graph, get_intra_file_calls,
# L3: CFG
get_cfg_context,
# L4: DFG
get_dfg_context,
# L5: PDG
get_slice, get_pdg_context,
# Unified
get_relevant_context,
# Analysis
analyze_dead_code, analyze_architecture, analyze_impact,
)
# Example: Get context for LLM
ctx = get_relevant_context("src/", "main", depth=2, language="python")
print(ctx.to_llm_string())
Bug Fixing Workflow (Navigation + Read)
Key insight: TLDR navigates, then you read. Don't try to fix bugs from summaries alone.
The Pattern
# 1. NAVIGATE: Find which files matter
tldr imports file.py # What does buggy file depend on?
tldr impact func_name . # Who calls the buggy function?
tldr calls . # Cross-file edges (follow 2-hop for models)
# 2. READ: Get actual code for critical files (2-4 files, not all 50)
# Use Read tool or tldr search -C for code with context
tldr search "def buggy_func" . -C 20
Why This Works
For cross-file bugs (e.g., wrong field name, type mismatch), you need to see:
- The file with the bug (handler accessing
task.user_id) - The file with the contract (model defining
owner_id)
TLDR finds which files matter. Then you read them.
Getting More Context
If TLDR output isn't enough:
tldr search "pattern" . -C 20- Get actual code with 20 lines contexttldr imports file.py- See what a file depends on- Read the file directly if you need the full implementation
Token Savings Evidence
Raw file read: 23,314 tokens
TLDR all layers: 1,189 tokens
─────────────────────────────────
Savings: 95%
The insight: Call graph navigates to relevant code, then layers give structured summaries. You don't read irrelevant code.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

