
research-external
by parcadei
Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.
Use Cases
MCP Server Integration
AI tool integration using Model Context Protocol. Using research-external.
API Integration
Easily build API integrations with external services.
Data Synchronization
Automatically sync data between multiple systems.
Webhook Setup
Enable event-driven integrations with webhooks.
SKILL.md
name: research-external description: External research workflow for docs, web, APIs - NOT codebase exploration model: sonnet allowed-tools: [Bash, Read, Write, Task]
External Research Workflow
Research external sources (documentation, web, APIs) for libraries, best practices, and general topics.
Note: The current year is 2025. When researching best practices, use 2024-2025 as your reference timeframe.
Invocation
/research-external <focus> [options]
Question Flow (No Arguments)
If the user types just /research-external with no or partial arguments, guide them through this question flow. Use AskUserQuestion for each phase.
Phase 1: Research Type
question: "What kind of information do you need?"
header: "Type"
options:
- label: "How to use a library/package"
description: "API docs, examples, patterns"
- label: "Best practices for a task"
description: "Recommended approaches, comparisons"
- label: "General topic research"
description: "Comprehensive multi-source search"
- label: "Compare options/alternatives"
description: "Which tool/library/approach is best"
Mapping:
- "How to use library" → library focus
- "Best practices" → best-practices focus
- "General topic" → general focus
- "Compare options" → best-practices with comparison framing
Phase 2: Specific Topic
question: "What specifically do you want to research?"
header: "Topic"
options: [] # Free text input
Examples of good answers:
- "How to use Prisma ORM with TypeScript"
- "Best practices for error handling in Python"
- "React vs Vue vs Svelte for dashboards"
Phase 3: Library Details (if library focus)
If user selected library focus:
question: "Which package registry?"
header: "Registry"
options:
- label: "npm (JavaScript/TypeScript)"
description: "Node.js packages"
- label: "PyPI (Python)"
description: "Python packages"
- label: "crates.io (Rust)"
description: "Rust crates"
- label: "Go modules"
description: "Go packages"
Then ask for specific library name if not already provided.
Phase 4: Depth
question: "How thorough should the research be?"
header: "Depth"
options:
- label: "Quick answer"
description: "Just the essentials"
- label: "Thorough research"
description: "Multiple sources, examples, edge cases"
Mapping:
- "Quick answer" → --depth shallow
- "Thorough" → --depth thorough
Phase 5: Output
question: "What should I produce?"
header: "Output"
options:
- label: "Summary in chat"
description: "Tell me what you found"
- label: "Research document"
description: "Write to thoughts/shared/research/"
- label: "Handoff for implementation"
description: "Prepare context for coding"
Mapping:
- "Research document" → --output doc
- "Handoff" → --output handoff
Summary Before Execution
Based on your answers, I'll research:
**Focus:** library
**Topic:** "Prisma ORM connection pooling"
**Library:** prisma (npm)
**Depth:** thorough
**Output:** doc
Proceed? [Yes / Adjust settings]
Focus Modes (First Argument)
| Focus | Primary Tool | Purpose |
|---|---|---|
library | nia-docs | API docs, usage patterns, code examples |
best-practices | perplexity-search | Recommended approaches, patterns, comparisons |
general | All MCP tools | Comprehensive multi-source research |
Options
| Option | Values | Description |
|---|---|---|
--topic | "string" | Required. The topic/library/concept to research |
--depth | shallow, thorough | Search depth (default: shallow) |
--output | handoff, doc | Output format (default: doc) |
--library | "name" | For library focus: specific package name |
--registry | npm, py_pi, crates, go_modules | For library focus: package registry |
Workflow
Step 1: Parse Arguments
Extract from user input:
FOCUS=$1 # library | best-practices | general
TOPIC="..." # from --topic
DEPTH="shallow" # from --depth (default: shallow)
OUTPUT="doc" # from --output (default: doc)
LIBRARY="..." # from --library (optional)
REGISTRY="npm" # from --registry (default: npm)
Step 2: Execute Research by Focus
Focus: library
Primary tool: nia-docs - Find API documentation, usage patterns, code examples.
# Semantic search in package
(cd $CLAUDE_OPC_DIR && uv run python -m runtime.harness scripts/mcp/nia_docs.py \
--package "$LIBRARY" \
--registry "$REGISTRY" \
--query "$TOPIC" \
--limit 10)
# If thorough depth, also grep for specific patterns
(cd $CLAUDE_OPC_DIR && uv run python -m runtime.harness scripts/mcp/nia_docs.py \
--package "$LIBRARY" \
--grep "$TOPIC")
# Supplement with official docs if URL known
(cd $CLAUDE_OPC_DIR && uv run python -m runtime.harness scripts/mcp/firecrawl_scrape.py \
--url "https://docs.example.com/api/$TOPIC" \
--format markdown)
Thorough depth additions:
- Multiple semantic queries with variations
- Grep for specific function/class names
- Scrape official documentation pages
Focus: best-practices
Primary tool: perplexity-search - Find recommended approaches, patterns, anti-patterns.
# AI-synthesized research (sonar-pro)
(cd $CLAUDE_OPC_DIR && uv run python scripts/mcp/perplexity_search.py \
--research "$TOPIC best practices 2024 2025")
# If comparing alternatives
(cd $CLAUDE_OPC_DIR && uv run python scripts/mcp/perplexity_search.py \
--reason "$TOPIC vs alternatives - which to choose?")
Thorough depth additions:
# Chain-of-thought for complex decisions
(cd $CLAUDE_OPC_DIR && uv run python scripts/mcp/perplexity_search.py \
--reason "$TOPIC tradeoffs and considerations 2025")
# Deep comprehensive research
(cd $CLAUDE_OPC_DIR && uv run python scripts/mcp/perplexity_search.py \
--deep "$TOPIC comprehensive guide 2025")
# Recent developments
(cd $CLAUDE_OPC_DIR && uv run python scripts/mcp/perplexity_search.py \
--search "$TOPIC latest developments" \
--recency month --max-results 5)
Focus: general
Use ALL available MCP tools - comprehensive multi-source research.
Step 2a: Library documentation (nia-docs)
(cd $CLAUDE_OPC_DIR && uv run python -m runtime.harness scripts/mcp/nia_docs.py \
--search "$TOPIC")
Step 2b: Web research (perplexity)
(cd $CLAUDE_OPC_DIR && uv run python scripts/mcp/perplexity_search.py \
--research "$TOPIC")
Step 2c: Specific documentation (firecrawl)
# Scrape relevant documentation pages found in perplexity results
(cd $CLAUDE_OPC_DIR && uv run python -m runtime.harness scripts/mcp/firecrawl_scrape.py \
--url "$FOUND_DOC_URL" \
--format markdown)
Thorough depth additions:
- Run all three tools with expanded queries
- Cross-reference findings between sources
- Follow links from initial results for deeper context
Step 3: Synthesize Findings
Combine results from all sources:
- Key Concepts - Core ideas and terminology
- Code Examples - Working examples from documentation
- Best Practices - Recommended approaches
- Pitfalls - Common mistakes to avoid
- Alternatives - Other options considered
- Sources - URLs for all citations
Step 4: Write Output
Output: doc (default)
Write to: thoughts/shared/research/YYYY-MM-DD-{topic-slug}.md
---
date: {ISO timestamp}
type: external-research
topic: "{topic}"
focus: {focus}
sources: [nia, perplexity, firecrawl]
status: complete
---
# Research: {Topic}
## Summary
{2-3 sentence summary of findings}
## Key Findings
### Library Documentation
{From nia-docs - API references, usage patterns}
### Best Practices (2024-2025)
{From perplexity - recommended approaches}
### Code Examples
```{language}
// Working examples found
Recommendations
- {Recommendation 1}
- {Recommendation 2}
Pitfalls to Avoid
- {Pitfall 1}
- {Pitfall 2}
Alternatives Considered
| Option | Pros | Cons |
|---|---|---|
| {Option 1} | ... | ... |
Sources
#### Output: `handoff`
Write to: `thoughts/shared/handoffs/{session}/research-{topic-slug}.yaml`
```yaml
---
type: research-handoff
ts: {ISO timestamp}
topic: "{topic}"
focus: {focus}
status: complete
---
goal: Research {topic} for implementation planning
sources_used: [nia, perplexity, firecrawl]
findings:
key_concepts:
- {concept1}
- {concept2}
code_examples:
- pattern: "{pattern name}"
code: |
// example code
best_practices:
- {practice1}
- {practice2}
pitfalls:
- {pitfall1}
recommendations:
- {rec1}
- {rec2}
sources:
- title: "{Source 1}"
url: "{url1}"
type: {documentation|article|reference}
for_plan_agent: |
Based on research, the recommended approach is:
1. {Step 1}
2. {Step 2}
Key libraries: {lib1}, {lib2}
Avoid: {pitfall1}
Step 5: Return Summary
Research Complete
Topic: {topic}
Focus: {focus}
Output: {path to file}
Key findings:
- {Finding 1}
- {Finding 2}
- {Finding 3}
Sources: {N} sources cited
{If handoff output:}
Ready for plan-agent to continue.
Error Handling
If an MCP tool fails (API key missing, rate limited, etc.):
-
Log the failure in output:
tool_status: nia: success perplexity: failed (rate limited) firecrawl: skipped -
Continue with other sources - partial results are valuable
-
Set status appropriately:
complete- All requested tools succeededpartial- Some tools failed, findings still usefulfailed- No useful results obtained
-
Note gaps in findings:
## Gaps - Perplexity unavailable - best practices section limited to nia results
Examples
Library Research (Shallow)
/research-external library --topic "dependency injection" --library fastapi --registry py_pi
Best Practices (Thorough)
/research-external best-practices --topic "error handling in Python async" --depth thorough
General Research for Handoff
/research-external general --topic "OAuth2 PKCE flow implementation" --depth thorough --output handoff
Quick Library Lookup
/research-external library --topic "useEffect cleanup" --library react
Integration with Other Skills
| After Research | Use Skill | For |
|---|---|---|
--output handoff | plan-agent | Create implementation plan |
| Code examples found | implement_task | Direct implementation |
| Architecture decision | create_plan | Detailed planning |
| Library comparison | Present to user | Decision making |
Required Environment
NIA_API_KEYorniaserver in mcp_config.jsonPERPLEXITY_API_KEYin environment or~/.claude/.envFIRECRAWL_API_KEYandfirecrawlserver in mcp_config.json
Notes
- NOT for codebase exploration - Use
research-codebaseorscoutfor that - Always cite sources - Include URLs for all findings
- 2024-2025 timeframe - Focus on current best practices
- Graceful degradation - Partial results better than no results
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

