Back to list
parcadei

prove

by parcadei

Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.

3,352🍴 252📅 Jan 23, 2026

SKILL.md


name: prove description: Formal theorem proving with research, testing, and verification phases triggers: ["prove", "verify", "show that", "is it true", "formalize"] allowed-tools: [Bash, Read, Write, Edit, WebSearch, WebFetch, AskUserQuestion, Grep, Glob] priority: high

/prove - Machine-Verified Proofs (5-Phase Workflow)

For mathematicians who want verified proofs without learning Lean syntax.

Prerequisites

Before using this skill, check Lean4 is installed:

# Check if lake is available
command -v lake &>/dev/null && echo "Lean4 installed" || echo "Lean4 NOT installed"

If not installed:

# Install elan (Lean version manager)
curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh

# Restart shell, then verify
lake --version

First run of /prove will download Mathlib (~2GB) via lake build.

Usage

/prove every group homomorphism preserves identity
/prove Monsky's theorem
/prove continuous functions on compact sets are uniformly continuous

The 5-Phase Workflow

┌─────────────────────────────────────────────────────────────┐
│  📚 RESEARCH → 🏗️ DESIGN → 🧪 TEST → ⚙️ IMPLEMENT → ✅ VERIFY  │
└─────────────────────────────────────────────────────────────┘

Phase 1: RESEARCH (before any Lean)

Goal: Understand if/how this can be formalized.

  1. Search Mathlib with Loogle (PRIMARY - type-aware search)

    # Use loogle for type signature search - finds lemmas by shape
    loogle-search "pattern_here"
    
    # Examples:
    loogle-search "Nontrivial _ ↔ _"           # Find Nontrivial lemmas
    loogle-search "(?a → ?b) → List ?a → List ?b"  # Map-like functions
    loogle-search "IsCyclic, center"           # Multiple concepts
    

    Query syntax:

    • _ = any single type
    • ?a, ?b = type variables (same var = same type)
    • Foo, Bar = must mention both
  2. Search External - What's the known proof strategy?

    • Use Nia MCP if available: mcp__nia__search
    • Use Perplexity MCP if available: mcp__perplexity__search
    • Fall back to WebSearch for papers/references
    • Check: Is there an existing formalization elsewhere (Coq, Isabelle)?
  3. Identify Obstacles

    • What lemmas are NOT in Mathlib?
    • Does proof require axioms beyond ZFC? (Choice, LEM, etc.)
    • Is the statement even true? (search for counterexamples)
  4. Output: Brief summary of proof strategy and obstacles

CHECKPOINT: If obstacles found, use AskUserQuestion:

  • "This requires [X]. Options: (a) restricted version, (b) accept axiom, (c) abort"

Phase 2: DESIGN (skeleton with sorries)

Goal: Build proof structure before filling details.

  1. Create Lean file with:

    • Imports
    • Definitions needed
    • Main theorem statement
    • Helper lemmas as sorry
  2. Annotate each sorry:

    -- SORRY: needs proof (straightforward)
    -- SORRY: needs proof (complex - ~50 lines)
    -- AXIOM CANDIDATE: v₂ constraint - will test in Phase 3
    
  3. Verify skeleton compiles (with sorries)

Output: proofs/<theorem_name>.lean with annotated structure

Goal: Catch false lemmas BEFORE trying to prove them.

For each AXIOM CANDIDATE sorry:

  1. Generate test cases

    -- Create #eval or example statements
    #eval testLemma (randomInput1)  -- should return true
    #eval testLemma (randomInput2)  -- should return true
    
  2. Run tests

    lake env lean test_lemmas.lean
    
  3. If counterexample found:

    • Report the counterexample
    • Use AskUserQuestion: "Lemma is FALSE. Options: (a) restrict domain, (b) reformulate, (c) abort"

CHECKPOINT: Only proceed if all axiom candidates pass testing.

Phase 4: IMPLEMENT (fill sorries)

Goal: Complete the proofs.

Standard iteration loop:

  1. Pick a sorry
  2. Write proof attempt
  3. Compiler-in-the-loop checks (hook fires automatically)
  4. If error, Godel-Prover suggests fixes
  5. Iterate until sorry is filled
  6. Repeat for all sorries

Tools active:

  • compiler-in-the-loop hook (on every Write)
  • Godel-Prover suggestions (on errors)

Phase 5: VERIFY (audit)

Goal: Confirm proof quality.

  1. Axiom Audit

    lake build && grep "depends on axioms" output
    
    • Standard: propext, Classical.choice, Quot.sound ✓
    • Custom axioms: LIST EACH ONE
  2. Sorry Count

    grep -c "sorry" proofs/<file>.lean
    
    • Must be 0 for "complete" proof
  3. Generate Summary

    ✓ MACHINE VERIFIED (or ⚠️ PARTIAL - N axioms)
    
    Theorem: <statement>
    Proof Strategy: <brief description>
    
    Proved:
    - <lemma 1>
    - <lemma 2>
    
    Axiomatized (if any):
    - <axiom>: <why it's needed>
    
    File: proofs/<name>.lean
    

Research Tool Priority

Use whatever's available, in order:

ToolBest ForCommand
LoogleType signature search (PRIMARY)loogle-search "pattern"
Nia MCPLibrary documentationmcp__nia__search
Perplexity MCPProof strategies, papersmcp__perplexity__search
WebSearchGeneral referencesWebSearch tool
WebFetchSpecific paper/page contentWebFetch tool

Loogle setup: Requires ~/tools/loogle with Mathlib index. Run loogle-server & for fast queries.

If no search tools available, proceed with caution and note "research phase skipped".

Checkpoints (automatic)

The workflow pauses for user input when:

  • ⚠️ Research finds obstacles
  • ❌ Testing finds counterexamples
  • 🔄 Implementation hits unfillable sorry after N attempts

Output Format

┌─────────────────────────────────────────────────────┐
│ ✓ MACHINE VERIFIED                                  │
│                                                     │
│ Theorem: ∀ φ : G →* H, φ(1_G) = 1_H                │
│                                                     │
│ Proof Strategy: Direct application of              │
│ MonoidHom.map_one from Mathlib.                    │
│                                                     │
│ Phases:                                             │
│   📚 Research: Found in Mathlib.Algebra.Group.Hom  │
│   🏗️ Design: Single lemma, no sorries needed       │
│   🧪 Test: N/A (trivial)                           │
│   ⚙️ Implement: 3 lines                            │
│   ✅ Verify: 0 custom axioms, 0 sorries            │
│                                                     │
│ File: proofs/group_hom_identity.lean               │
└─────────────────────────────────────────────────────┘

What I Can Prove

DomainExamples
Category TheoryFunctors, natural transformations, Yoneda
Abstract AlgebraGroups, rings, homomorphisms
TopologyContinuity, compactness, connectedness
AnalysisLimits, derivatives, integrals
LogicPropositional, first-order

Limitations

  • Complex proofs may take multiple iterations
  • Novel research-level proofs may exceed capabilities
  • Some statements are unprovable over ℚ (need ℝ extension)

Behind The Scenes

  • Lean 4.26.0 - Theorem prover
  • Mathlib - 100K+ formalized theorems
  • Godel-Prover - AI tactic suggestions (via LMStudio)
  • Compiler-in-the-loop - Automatic verification on every write
  • Research tools - Nia, Perplexity, WebSearch (graceful degradation)

See Also

  • /loogle-search - Search Mathlib by type signature (used in Phase 1 RESEARCH)
  • /math-router - For computation (integrals, equations)
  • /lean4 - Direct Lean syntax access

Score

Total Score

95/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon