← Back to list

prime-numbers
by parcadei
Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.
⭐ 3,352🍴 252📅 Jan 23, 2026
SKILL.md
name: prime-numbers description: "Problem-solving strategies for prime numbers in graph number theory" allowed-tools: [Bash, Read]
Prime Numbers
When to Use
Use this skill when working on prime-numbers problems in graph number theory.
Decision Tree
-
Primality testing hierarchy
- Trial division: O(sqrt(n)), exact
- Miller-Rabin: O(k log^3 n), probabilistic
- AKS: O(log^6 n), deterministic polynomial
-
Factorization
- Trial division for small factors
- Pollard's rho: probabilistic, medium numbers
- Quadratic sieve: large numbers
sympy_compute.py factor "n"
-
Prime distribution
- Prime Number Theorem: pi(x) ~ x/ln(x)
- Prime gaps: p_{n+1} - p_n
sympy_compute.py limit "pi(x) * ln(x) / x"
-
Fermat's Little Theorem
- a^{p-1} = 1 (mod p) for a not divisible by p
- Use for modular exponentiation
z3_solve.py prove "fermat_little"
-
Wilson's Theorem
- (p-1)! = -1 (mod p) iff p is prime
Tool Commands
Sympy_Factor
uv run python -m runtime.harness scripts/sympy_compute.py factor "n"
Z3_Primality
uv run python -m runtime.harness scripts/z3_solve.py prove "no_divisor_between_1_and_sqrt_n"
Sympy_Prime_Count
uv run python -m runtime.harness scripts/sympy_compute.py simplify "pi(x) ~ x/ln(x)"
Z3_Fermat_Little
uv run python -m runtime.harness scripts/z3_solve.py prove "a**(p-1) == 1 mod p"
Key Techniques
From indexed textbooks:
Cognitive Tools Reference
See .claude/skills/math-mode/SKILL.md for full tool documentation.
Score
Total Score
95/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

