Back to list
parcadei

parallel-agents

by parcadei

Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.

3,352🍴 252📅 Jan 23, 2026

Use Cases

🔗

MCP Server Integration

AI tool integration using Model Context Protocol. Using parallel-agents.

🔗

API Integration

Easily build API integrations with external services.

🔄

Data Synchronization

Automatically sync data between multiple systems.

SKILL.md


name: parallel-agents description: Parallel Agent Orchestration user-invocable: false

Parallel Agent Orchestration

When launching multiple agents in parallel, follow this pattern to avoid context bloat.

Core Principles

  1. No TaskOutput calls - TaskOutput returns full agent output, bloating context
  2. Run in background - Always use run_in_background: true
  3. File-based confirmation - Agents write status to files, not return values
  4. Append, don't overwrite - Multiple agents can write to same status file

Output Patterns

Simple Confirmation (parallel batch work)

For tasks where agents just need to confirm completion:

# Agent writes to shared status file
echo "COMPLETE: <task-name> - $(date)" >> .claude/cache/<batch-name>-status.txt
  • Use >> to append (not > which overwrites)
  • Include timestamp for ordering
  • One line per agent completion
  • Check with: cat .claude/cache/<batch-name>-status.txt

Detailed Output (research/exploration)

For tasks requiring detailed findings:

.claude/cache/agents/<task-type>/<agent-id>/
├── output.md      # Main findings
├── artifacts/     # Any generated files
└── status.txt     # Completion confirmation
  • Each agent gets own directory
  • Full output preserved for later reading
  • Status file still used for quick completion check

Task Prompt Template

# Task: <TASK_NAME>

## Your Mission
<clear objective>

## Output
When done, write confirmation:
\`\`\`bash
echo "COMPLETE: <identifier> - $(date)" >> .claude/cache/<batch>-status.txt
\`\`\`

Do NOT return large output. Complete work silently.

Launching Pattern

// Launch all in single message block (parallel)
Task({
  description: "Task 1",
  prompt: "...",
  subagent_type: "general-purpose",
  run_in_background: true
})
Task({
  description: "Task 2",
  prompt: "...",
  subagent_type: "general-purpose",
  run_in_background: true
})
// ... up to 15 parallel agents

Monitoring

# Check completion status
cat .claude/cache/<batch>-status.txt

# Count completions
wc -l .claude/cache/<batch>-status.txt

# Watch for updates
tail -f .claude/cache/<batch>-status.txt

Batch Size

  • Max 15 agents per parallel batch
  • Wait for batch to complete before launching next
  • Use status file to track which completed

DO

  • Use run_in_background: true always
  • Have agents write to status files
  • Use append (>>) not overwrite (>)
  • Give each agent clear, self-contained instructions
  • Include all context in prompt (agents don't share memory)

DON'T

  • Call TaskOutput (bloats context)
  • Return large outputs from agents
  • Launch more than 15 at once
  • Rely on agent return values for orchestration

Example: Provider Backfill

# Status file
.claude/cache/provider-backfill-status.txt

# Each agent appends on completion
echo "COMPLETE: anthropic - Thu Jan 2 12:34:56 2025" >> .claude/cache/provider-backfill-status.txt
echo "COMPLETE: openai - Thu Jan 2 12:35:12 2025" >> .claude/cache/provider-backfill-status.txt

Check progress:

cat .claude/cache/provider-backfill-status.txt
# COMPLETE: anthropic - Thu Jan 2 12:34:56 2025
# COMPLETE: openai - Thu Jan 2 12:35:12 2025

Score

Total Score

95/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon