
mcp-chaining
by parcadei
Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.
Use Cases
MCP Server Integration
AI tool integration using Model Context Protocol. Using mcp-chaining.
API Integration
Easily build API integrations with external services.
Data Synchronization
Automatically sync data between multiple systems.
SKILL.md
name: mcp-chaining description: Research-to-implement pipeline chaining 5 MCP tools with graceful degradation allowed-tools: [Bash, Read] user-invocable: false
MCP Chaining Pipeline
A research-to-implement pipeline that chains 5 MCP tools for end-to-end workflows.
When to Use
- Building multi-tool MCP pipelines
- Understanding how to chain MCP calls with graceful degradation
- Debugging MCP environment variable issues
- Learning the tool naming conventions for different MCP servers
What We Built
A pipeline that chains these tools:
| Step | Server | Tool ID | Purpose |
|---|---|---|---|
| 1 | nia | nia__search | Search library documentation |
| 2 | ast-grep | ast-grep__find_code | Find AST code patterns |
| 3 | morph | morph__warpgrep_codebase_search | Fast codebase search |
| 4 | qlty | qlty__qlty_check | Code quality validation |
| 5 | git | git__git_status | Git operations |
Key Files
scripts/research_implement_pipeline.py- Main pipeline implementationscripts/test_research_pipeline.py- Test harness with isolated sandboxworkspace/pipeline-test/sample_code.py- Test sample code
Usage Examples
# Dry-run pipeline (preview plan without changes)
uv run python -m runtime.harness scripts/research_implement_pipeline.py \
--topic "async error handling python" \
--target-dir "./workspace/pipeline-test" \
--dry-run --verbose
# Run tests
uv run python -m runtime.harness scripts/test_research_pipeline.py --test all
# View the pipeline script
cat scripts/research_implement_pipeline.py
Critical Fix: Environment Variables
The MCP SDK's get_default_environment() only includes basic vars (PATH, HOME, etc.), NOT os.environ. We fixed src/runtime/mcp_client.py to pass full environment:
# In _connect_stdio method:
full_env = {**os.environ, **(resolved_env or {})}
This ensures API keys from ~/.claude/.env reach subprocesses.
Graceful Degradation Pattern
Each tool is optional. If unavailable (disabled, no API key, etc.), the pipeline continues:
async def check_tool_available(tool_id: str) -> bool:
"""Check if an MCP tool is available."""
server_name = tool_id.split("__")[0]
server_config = manager._config.get_server(server_name)
if not server_config or server_config.disabled:
return False
return True
# In step function:
if not await check_tool_available("nia__search"):
return StepResult(status=StepStatus.SKIPPED, message="Nia not available")
Tool Name Reference
nia (Documentation Search)
nia__search - Universal documentation search
nia__nia_research - Research with sources
nia__nia_grep - Grep-style doc search
nia__nia_explore - Explore package structure
ast-grep (Structural Code Search)
ast-grep__find_code - Find code by AST pattern
ast-grep__find_code_by_rule - Find by YAML rule
ast-grep__scan_code - Scan with multiple patterns
morph (Fast Text Search + Edit)
morph__warpgrep_codebase_search - 20x faster grep
morph__edit_file - Smart file editing
qlty (Code Quality)
qlty__qlty_check - Run quality checks
qlty__qlty_fmt - Auto-format code
qlty__qlty_metrics - Get code metrics
qlty__smells - Detect code smells
git (Version Control)
git__git_status - Get repo status
git__git_diff - Show differences
git__git_log - View commit history
git__git_add - Stage files
Pipeline Architecture
+----------------+
| CLI Args |
| (topic, dir) |
+-------+--------+
|
+-------v--------+
| PipelineContext|
| (shared state) |
+-------+--------+
|
+-------+-------+-------+-------+-------+
| | | | | |
+---v---+---v---+---v---+---v---+---v---+
| nia |ast-grp| morph | qlty | git |
|search |pattern|search |check |status |
+---+---+---+---+---+---+---+---+---+---+
| | | | |
+-------v-------v-------v-------+
|
+-------v--------+
| StepResult[] |
| (aggregated) |
+----------------+
Error Handling
The pipeline captures errors without failing the entire run:
try:
result = await call_mcp_tool("nia__search", {"query": topic})
return StepResult(status=StepStatus.SUCCESS, data=result)
except Exception as e:
ctx.errors.append(f"nia: {e}")
return StepResult(status=StepStatus.FAILED, error=str(e))
Creating Your Own Pipeline
- Copy the pattern from
scripts/research_implement_pipeline.py - Define your steps as async functions
- Use
check_tool_available()for graceful degradation - Chain results through
PipelineContext - Aggregate with
print_summary()
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

