Back to list
parcadei

first-order-odes

by parcadei

Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.

3,352🍴 252📅 Jan 23, 2026

Use Cases

🔗

MCP Server Integration

AI tool integration using Model Context Protocol. Using first-order-odes.

🔗

API Integration

Easily build API integrations with external services.

🔄

Data Synchronization

Automatically sync data between multiple systems.

SKILL.md


name: first-order-odes description: "Problem-solving strategies for first order odes in odes pdes" allowed-tools: [Bash, Read]

First Order Odes

When to Use

Use this skill when working on first-order-odes problems in odes pdes.

Decision Tree

  1. Classify the ODE

    • Linear: y' + P(x)y = Q(x)?
    • Separable: y' = f(x)g(y)?
    • Exact: M(x,y)dx + N(x,y)dy = 0 with dM/dy = dN/dx?
    • Bernoulli: y' + P(x)y = Q(x)y^n?
  2. Select Solution Method

    TypeMethod
    SeparableSeparate and integrate
    LinearIntegrating factor e^{int P dx}
    ExactFind potential function
    BernoulliSubstitute v = y^{1-n}
  3. Numerical Solution (IVP)

    • scipy.integrate.solve_ivp(f, [t0, tf], y0, method='RK45')
    • For stiff systems: method='Radau' or method='BDF'
    • Adaptive step size: specify rtol/atol, not step size
  4. Verify Solution

    • Substitute back into ODE
    • Check initial/boundary conditions
    • sympy_compute.py dsolve "y' + y = x" --ics "{y(0): 1}"
  5. Phase Portrait (Autonomous)

    • Find equilibria: f(y*) = 0
    • Analyze stability: sign of f'(y*)
    • z3_solve.py solve "dy/dt == 0"

Tool Commands

Scipy_Solve_Ivp

uv run python -c "from scipy.integrate import solve_ivp; sol = solve_ivp(lambda t, y: -y, [0, 5], [1]); print('y(5) =', sol.y[0][-1])"

Sympy_Dsolve

uv run python -m runtime.harness scripts/sympy_compute.py dsolve "Derivative(y,x) + y" --ics "{y(0): 1}"

Z3_Equilibrium

uv run python -m runtime.harness scripts/z3_solve.py solve "f(y_star) == 0"

Key Techniques

From indexed textbooks:

  • [Elementary Differential Equations and... (Z-Library)] Solving ODEs with MATLAB (New York: Cambridge REFERENCES cyan black NJ: Prentice-Hall, 1971). Mattheij, Robert, and Molenaar, Jaap, Ordinary Differential Equations in Theory and Practice Shampine, Lawrence F. Numerical Solution of Ordinary Differential Equations (New York: Chapman and Shampine, L.
  • [Elementary Differential Equations and... (Z-Library)] Differential Equations: An Introduction to Modern Methods and Applications (2nd ed. Use the Laplace transform to solve the system 2e−t 3t α1 α2 , where α1 and α2 are arbitrary. How must α1 and α2 be chosen so that the solution is identical to Eq.
  • [An Introduction to Numerical Analysis... (Z-Library)] Modern Numerical Methods for Ordinary Wiley, New York. User's guide for DVERK: A subroutine for solving non-stiff ODEs. Keller (1966), Analysis of Numerical Methods.
  • [Elementary Differential Equations and... (Z-Library)] Show that the rst order Adams–Bashforth method is the Euler method and that the rst order Adams–Moulton method is the backward Euler method. Show that the third order Adams–Moulton formula is yn+1 = yn + (h/12)(5fn+1 + 8fn − fn−1). Derive the second order backward differentiation formula given by Eq.
  • [An Introduction to Numerical Analysis... (Z-Library)] Test results on initial value methods for non-stiff ordinary differential equations, SIAM J. Comparing numerical methods for Fehlberg, E. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnumg mit Schrittweiten-Kontrolle und ihre Anwendung auf Warme leitungsprobleme, Computing 6, 61-71.

Cognitive Tools Reference

See .claude/skills/math-mode/SKILL.md for full tool documentation.

Score

Total Score

95/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon