
compactness
by parcadei
Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.
Use Cases
MCP Server Integration
AI tool integration using Model Context Protocol. Using compactness.
API Integration
Easily build API integrations with external services.
Data Synchronization
Automatically sync data between multiple systems.
SKILL.md
name: compactness description: "Problem-solving strategies for compactness in topology" allowed-tools: [Bash, Read]
Compactness
When to Use
Use this skill when working on compactness problems in topology.
Decision Tree
-
Is X compact?
- If X subset R^n: Is X closed AND bounded? (Heine-Borel)
- If X is metric: Does every sequence have convergent subsequence?
- General: Does every open cover have finite subcover?
z3_solve.py prove "bounded_and_closed"
-
Compactness Tests
- Heine-Borel (R^n): closed + bounded = compact
- Sequential: every sequence has convergent subsequence
sympy_compute.py limit "a_n" --var nto check convergence
-
Product Spaces
- Tychonoff: product of compact spaces is compact
- Finite products preserve compactness directly
-
Consequences of Compactness
- Continuous image of compact is compact
- Continuous real function on compact attains max/min
sympy_compute.py maximum "f(x)" --var x --domain "[a,b]"
Tool Commands
Z3_Bounded_Closed
uv run python -m runtime.harness scripts/z3_solve.py prove "bounded_and_closed"
Sympy_Limit
uv run python -m runtime.harness scripts/sympy_compute.py limit "a_n" --var n --at oo
Sympy_Maximum
uv run python -m runtime.harness scripts/sympy_compute.py maximum "f(x)" --var x --domain "[a,b]"
Key Techniques
From indexed textbooks:
- [Topology (Munkres, James Raymond) (Z-Library)] CompactSpaces163 164ConnectednessandCompactnessCh. Itisnotasnaturalorintuitiveastheformer;somefamiliaritywithitisneededbeforeitsusefulnessbecomesapparent. AcollectionAofsubsetsofaspaceXissaidtocoverX,ortobeacoveringofX,iftheunionoftheelementsofAisequaltoX.
- [Real Analysis (Halsey L. Royden, Patr... (Z-Library)] If X contains more than one point, show that the only possible extreme points of B have norm 1. If X = Lp[a, b], 1 < p < ∞, show that every unit vector in B is an extreme point of B. If X = L∞[a, b], show that the extreme points of B are those functions f ∈ B such that |f | = 1 almost everywhere on [a, b].
- [Topology (Munkres, James Raymond) (Z-Library)] ShowthatinthenitecomplementtopologyonR,everysubspaceiscom-pact. IfRhasthetopologyconsistingofallsetsAsuchthatR−AiseithercountableorallofR,is[0,1]acompactsubspace? ShowthataniteunionofcompactsubspacesofXiscompact.
- [Real Analysis (Halsey L. Royden, Patr... (Z-Library)] The Eberlein-ˇSmulian Theorem . Metrizability of Weak Topologies . X is reexive; (ii) B is weakly compact; (iii) B is weakly sequentially compact.
- [Topology (Munkres, James Raymond) (Z-Library)] SupposethatYiscompactandA={Aα}α∈JisacoveringofYbysetsopeninX. Thenthecollection{Aα∩Y|α∈J}isacoveringofYbysetsopeninY;henceanitesubcollection{Aα1∩Y,. Aαn}isasubcollectionofAthatcoversY.
Cognitive Tools Reference
See .claude/skills/math-mode/SKILL.md for full tool documentation.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

