Back to list
parcadei

braintrust-analyze

by parcadei

Context management for Claude Code. Hooks maintain state via ledgers and handoffs. MCP execution without context pollution. Agent orchestration with isolated context windows.

3,352🍴 252📅 Jan 23, 2026

Use Cases

🔗

MCP Server Integration

AI tool integration using Model Context Protocol. Using braintrust-analyze.

🔗

API Integration

Easily build API integrations with external services.

🔄

Data Synchronization

Automatically sync data between multiple systems.

📡

Webhook Setup

Enable event-driven integrations with webhooks.

SKILL.md


name: braintrust-analyze description: Analyze Claude Code sessions via Braintrust

Braintrust Analysis

Analyze your Claude Code sessions for patterns, issues, and insights using Braintrust tracing data.

When to Use

  • After completing a complex task (retrospective)
  • When debugging why something failed
  • Weekly review of productivity patterns
  • Finding opportunities to create new skills
  • Understanding token usage trends

Commands

Run from the project directory:

# Analyze last session - summary with tool/agent/skill breakdown
uv run python -m runtime.harness scripts/braintrust_analyze.py --last-session

# List recent sessions
uv run python -m runtime.harness scripts/braintrust_analyze.py --sessions 5

# Agent usage statistics (last 7 days)
uv run python -m runtime.harness scripts/braintrust_analyze.py --agent-stats

# Skill usage statistics (last 7 days)
uv run python -m runtime.harness scripts/braintrust_analyze.py --skill-stats

# Detect loops - find repeated tool patterns (>5 same tool calls)
uv run python -m runtime.harness scripts/braintrust_analyze.py --detect-loops

# Replay specific session - show full sequence of actions
uv run python -m runtime.harness scripts/braintrust_analyze.py --replay <session-id>

# Weekly summary - daily activity breakdown
uv run python -m runtime.harness scripts/braintrust_analyze.py --weekly-summary

# Token trends - usage over time
uv run python -m runtime.harness scripts/braintrust_analyze.py --token-trends

Options

  • --project NAME - Braintrust project name (default: agentica)

What You'll Learn

Session Analysis

  • Tool usage breakdown
  • Agent spawns (plan-agent, debug-agent, etc.)
  • Skill activations (/commit, /research, etc.)
  • Token consumption estimates

Loop Detection

Find sessions where the same tool was called repeatedly, which may indicate:

  • Stuck in a search loop
  • Inefficient approach
  • Opportunity for better tooling

Usage Patterns

  • Which agents you use most
  • Which skills get activated
  • Daily/weekly activity trends

Examples

Quick Retrospective

# What happened in my last session?
uv run python -m runtime.harness scripts/braintrust_analyze.py --last-session

Output:

## Session Analysis
**ID:** `92940b91...`
**Started:** 2025-12-24T01:31:05Z
**Spans:** 14

### Tool Usage
- Read: 4
- Bash: 2
- Edit: 2
...

Find Loops

uv run python -m runtime.harness scripts/braintrust_analyze.py --detect-loops

Weekly Review

uv run python -m runtime.harness scripts/braintrust_analyze.py --weekly-summary

Requirements

  • BRAINTRUST_API_KEY in ~/.claude/.env or project .env
  • Braintrust tracing enabled (via braintrust-claude-plugin)

Score

Total Score

95/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon