
checking-skill-best-practices
by onukura
Sustainability signals for OSS dependencies across ecosystems
SKILL.md
name: checking-skill-best-practices description: Evaluates Claude skills against official best practices from Anthropic documentation. Use when reviewing skill quality, ensuring compliance with guidelines, or improving existing skills.
Checking Skill Best Practices
Evaluates a skill against the latest official guidelines from Anthropic. Always fetches current documentation to ensure accurate, up-to-date assessment.
When to Use
- Reviewing skill quality before finalization
- User asks to check compliance with best practices
- Improving or refactoring existing skills
Evaluation Process
1. Fetch Latest Guidelines
Start here every time:
fetch_webpage("https://platform.claude.com/docs/en/agents-and-tools/agent-skills/best-practices")
Extract current evaluation criteria from the fetched content.
2. Read Target Skill
read_file(".claude/skills/[skill-name]/SKILL.md")
3. Evaluate Against Fetched Guidelines
Compare skill against criteria from the documentation:
- Core principles (conciseness, appropriate freedom, testing)
- Skill structure (frontmatter, naming, description)
- Content guidelines (terminology, time-sensitivity, patterns)
- Anti-patterns to avoid
4. Generate Report
Provide structured findings with specific recommendations:
Evaluation Report Template
## Skill Evaluation: [skill-name]
**Overall Score**: X/10
**Guideline Version**: [Date from fetched doc]
### ✅ Strengths
- [What follows best practices]
### ⚠️ Issues Found
#### Critical (Must Fix)
- [ ] [Issue with specific fix]
#### Recommended (Should Fix)
- [ ] [Improvement suggestion]
### 🔧 Actionable Steps
1. [Highest priority fix]
2. [Next improvement]
### 📚 Reference
[Relevant sections from fetched documentation]
Usage Example
User: "Check if adding-new-metric follows best practices"
1. fetch_webpage(best-practices-url)
→ Extract current criteria
2. read_file(".claude/skills/adding-new-metric/SKILL.md")
→ Get skill content
3. Compare against extracted criteria:
- Name format (gerund form?)
- Description quality (what + when?)
- Conciseness (≤500 lines?)
- Progressive disclosure used?
- Consistent terminology?
4. Generate report with specific fixes
Key Evaluation Areas
From the fetched documentation, focus on:
Critical:
- YAML frontmatter correctness
- Naming convention compliance
- Description effectiveness
Important:
- Conciseness (every token justified?)
- Progressive disclosure (reference files?)
- Consistent terminology
Code-specific (if applicable):
- Unix-style paths
- Error handling
- MCP tool naming
Iteration Pattern
- Evaluate → 2. Report issues → 3. Apply fixes → 4. Re-evaluate
Use multi_replace_string_in_file for efficient corrections.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
