Back to list
nsalvacao

discovery-pack

by nsalvacao

Scientific project discovery framework for AI agents. Transform ambiguous ideas into structured specifications using JTBD, Amazon PR/FAQ, ADR, and Lean Startup validation. Agent Skills compliant.

0🍴 0📅 Jan 7, 2026

SKILL.md


name: discovery-pack description: Complete project discovery workflow using Jobs-to-be-Done, Amazon PR/FAQ, ADR, and Lean Startup validation. Transforms ambiguous ideas into structured specifications ready for implementation. Activate when user mentions "discovery", "requirements discovery", "project framing", "validate assumptions", "JTBD analysis", or before starting implementation of unclear ideas. license: MIT metadata: author: nsalvacao version: "2.0.0" requires: "Python 3.11+ for optional automation scripts" changelog: - "2.0.0: Flat architecture consolidation, cross-agent portability, schema-template sync, progressive disclosure" - "1.1.0: Enhanced mode selection enforcement, output directory fallback strategy, automation workflow" - "1.0.0: Initial release"

Discovery Pack Workflow

Structured project discovery using proven methodologies (JTBD, Amazon PR/FAQ, ADR, Lean Startup, DDD). Transforms ambiguous ideas into clear, validated specifications ready for spec-kit handoff.

Quick Start

Activation Triggers: "discovery", "requirements discovery", "project framing", "validate assumptions", "JTBD analysis"

Two Modes:

  • Lite (3 artifacts, 15-30 min): Small projects, <5 people, low risk, personal/startup
  • Full (8 artifacts, 1-2 hours): Enterprise, compliance, security-critical, high risk

Pre-Flight Check:

bash scripts/pre-flight-check.sh <output-dir> <mode>

Core Methodologies

MethodologyPurposeApplied In
Jobs-to-be-Done (JTBD)User motivation & contextProblem framing (00)
Amazon PR/FAQCustomer clarityProblem framing (00)
ADRDecision rationaleDecision log (06)
Lean StartupAssumption validationValidation plan (05)
DDDDomain languageDomain model (02)

📖 Details: shared-references/methodologies.md, shared-references/glossary.md

Installation & Paths

Supported Locations:

  • ~/.copilot/skills/discovery-pack/ (GitHub Copilot CLI)
  • ~/.claude/skills/discovery-pack/ (Claude Code)
  • .claude/skills/discovery-pack/ (project-local)
  • Any custom location (relative path resolution)

Script Invocation:

# From skill root:
python3 scripts/validate.py <output-dir>

# From anywhere:
python3 ~/.copilot/skills/discovery-pack/scripts/validate.py <output-dir>

All scripts use relative path resolution (Path(__file__) / ${BASH_SOURCE[0]}).


Workflow Orchestration

Step 1: Mode Selection (MANDATORY)

🛑 ALWAYS ask first:

ModeArtifactsTimeBest For
lite3 (00, 03, 07)15-30 minSmall projects, low risk, <5 people
full8 (00-07)1-2 hoursEnterprise, compliance, high risk

Decision Tree:

  • Enterprise/regulated/security-critical? → full
  • Multi-team/multi-stakeholder? → full
  • Personal/startup/prototype? → lite
  • Unsure? → lite (can upgrade later)

Automation Check:

# Optional but recommended (30-40% token savings)
pip install -r scripts/requirements.txt

Step 2: Output Directory

Target: <project-root>/docs/discovery/YYYY-MM-DD-<topic-slug>

Examples:

  • /docs/discovery/2026-01-07-user-auth
  • /docs/discovery/2026-01-07-api-redesign

Auto-create if missing (scripts handle this).

Step 3: Execute Workflow

Progressive Disclosure Strategy: Load detailed workflow only when starting execution.

🔵 Lite Mode (3 artifacts)

Workflow File: shared-references/workflows/lite-mode.md

Quick Overview:

  1. Problem Framing (00) → Load templates/00_problem-frame.md, fill YAML, validate
  2. Option Analysis (03) → Load templates/03_option-space.md, compare 2+ options, recommend
  3. Handoff (07) → Load templates/07_speckit-handoff.md, prepare spec-kit input

Load detailed instructions: Read shared-references/workflows/lite-mode.md before starting Phase 1.

🟣 Full Mode (8 artifacts)

Workflow File: shared-references/workflows/full-mode.md

Quick Overview:

  1. Problem Framing (00) → Foundation
  2. Constraints (01) → Security, performance, observability boundaries
  3. Domain Model (02) → Entities, bounded contexts, ubiquitous language
  4. Option Analysis (03) → Alternatives comparison
  5. Assumptions (04) → Auto-generated via extract_assumptions.py
  6. Validation Plan (05) → Experiments to test assumptions
  7. Decision Log (06) → ADR format decisions
  8. Handoff (07) → Spec-kit integration

Load detailed instructions: Read shared-references/workflows/full-mode.md before starting Phase 1.

Step 4: Validation Gate (MANDATORY)

🛑 After artifact generation:

python3 scripts/validate.py <output-dir>

Expected Output:

✅ 00_problem-frame.md: Valid
✅ 03_option-space.md: Valid
✅ 07_speckit-handoff.md: Valid
📊 Summary: 3/3 artifacts valid (100%)

If validation fails:

  1. Read error message (shows file + field + expected format)
  2. Fix YAML frontmatter (common: missing fields, wrong types, invalid enums)
  3. Re-validate until 100% pass

No progression without 100% validation pass (schema compliance mandatory).


Artifact Reference

IDNameLiteFullAutoTemplate
00Problem Frame-templates/00_problem-frame.md
01Constraints & NFRs--templates/01_constraints-nfr.md
02Domain Model--templates/02_domain-model.md
03Option Space-templates/03_option-space.md
04Assumptions-Auto via extract_assumptions.py
05Validation Plan--templates/05_validation-plan.md
06Decision Log--templates/06_decision-log.md
07Spec-Kit Handoff-templates/07_speckit-handoff.md

Template Loading: Load template only when generating that specific artifact (progressive disclosure).


Automation Scripts

ScriptPurposeWhen to Use
scripts/pre-flight-check.shValidate environmentBefore starting workflow
scripts/discovery-pack-run.shFull workflow executorAutomated end-to-end execution
scripts/validate.pySchema validationAfter each artifact / end of workflow
scripts/extract_assumptions.pyGenerate 04 from 00-03Full mode, after 00-03 complete
scripts/ci-validate.shCI/CD integrationAutomated validation in pipelines

Token Savings: Automation provides ~30-40% token reduction vs manual execution.


Quality Gates

Pre-Flight Requirements

  • Mode selected (lite/full)
  • Output directory determined
  • Python 3.11+ available (if using automation)
  • Templates accessible via relative paths

Artifact Quality

  • 100% schema validation pass
  • All required YAML fields present
  • Epistemic tags used ([ASSUMPTION], [HYPOTHESIS], [CONSTRAINT])
  • Cross-references between artifacts (e.g., 05 links to 04 assumption IDs)

Handoff Criteria

  • All planned artifacts generated
  • Validation passes 100%
  • 07_speckit-handoff.md marks ready_for_speckit: true
  • Stakeholder review complete

Token Optimization

Progressive Disclosure Pattern:

  1. Load workflow file only when starting execution (not upfront)
  2. Load template only when generating that artifact
  3. Load methodology details only when user asks clarifying questions
  4. Use automation scripts (reduces 30-40% tokens)

Target Token Budget:

  • Lite mode: ≤15k tokens
  • Full mode: ≤25k tokens

High Token Operations (avoid unless necessary):

  • Reading all templates upfront
  • Inline methodology explanations (use references)
  • Verbose examples (use workflow files)

Troubleshooting

Validation Errors

Error TypeSymptomFix
Missing fieldMissing required field: X.Y.ZAdd field to YAML frontmatter
Type mismatchExpected array, got objectConvert format (e.g., single → list)
Invalid enumValue not in enum: [...]Use valid enum value from error
YAML syntaxcould not parse YAMLCheck indentation, colons, quotes

Common Issues

Scripts not found:

  • Verify working directory (should be skill root)
  • Or use full path: ~/.copilot/skills/discovery-pack/scripts/...

Automation unavailable:

  • Install dependencies: pip install -r scripts/requirements.txt
  • Or proceed manually (workflow files guide you)

Template loading fails:

  • Check templates/ directory exists relative to skill root
  • Verify path resolution working (run scripts/pre-flight-check.sh)

Next Steps After Discovery

  1. Review artifacts with stakeholders
  2. Execute validation experiments from 05_validation-plan.md (if full mode)
  3. Start spec-kit workflow: Use 07_speckit-handoff.md as input to /speckit.constitution
  4. Discovery complete → Proceed to specification phase

Version History

  • 2.0.0 (2026-01-07): Flat architecture (1 SKILL.md), cross-agent portability, 100% schema validation
  • 1.1.0 (2026-01-06): Enhanced enforcement, automation workflow
  • 1.0.0 (2026-01-05): Initial release with 8 sub-skills

Support & References

  • Methodologies: shared-references/methodologies.md
  • Glossary: shared-references/glossary.md
  • Lite Workflow: shared-references/workflows/lite-mode.md
  • Full Workflow: shared-references/workflows/full-mode.md
  • Schemas: schemas/*.schema.json
  • Templates: templates/*.md

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

3ヶ月以内に更新

+5
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon