Back to list
mjunaidca

building-mcp-servers

by mjunaidca

A curated collection of Agent Skills — reusable units of intelligence that teach AI General Agents how to perform specific tasks autonomously.

18🍴 9📅 Jan 23, 2026

SKILL.md


name: building-mcp-servers description: | Guides creation of high-quality MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. Use when building MCP servers to integrate external APIs or services, whether in Python (FastMCP) or Node/TypeScript (MCP SDK). Covers tool design, authentication, Docker deployment, and evaluation creation. NOT when consuming existing MCP servers (use the server directly).

MCP Server Development Guide

Overview

Create MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. The quality of an MCP server is measured by how well it enables LLMs to accomplish real-world tasks.


High-Level Workflow

Creating a high-quality MCP server involves four main phases:

Phase 1: Deep Research and Planning

1.1 Understand Modern MCP Design

API Coverage vs. Workflow Tools: Balance comprehensive API endpoint coverage with specialized workflow tools. When uncertain, prioritize comprehensive API coverage.

Tool Naming and Discoverability: Use consistent prefixes (e.g., github_create_issue, github_list_repos) and action-oriented naming.

Context Management: Design tools that return focused, relevant data. Support filtering/pagination.

Actionable Error Messages: Error messages should guide agents toward solutions with specific suggestions.

1.2 Study MCP Protocol Documentation

Start with the sitemap: https://modelcontextprotocol.io/sitemap.xml

Fetch pages with .md suffix (e.g., https://modelcontextprotocol.io/specification/draft.md).

Key pages: Specification overview, transport mechanisms, tool/resource/prompt definitions.

1.3 Study Framework Documentation

Recommended stack:

  • Language: TypeScript (high-quality SDK, good AI code generation)
  • Transport: Streamable HTTP for remote servers, stdio for local servers

Load framework documentation:

SDK Documentation:

  • TypeScript: https://raw.githubusercontent.com/modelcontextprotocol/typescript-sdk/main/README.md
  • Python: https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md

1.4 Plan Your Implementation

Review the service's API documentation. List endpoints to implement, starting with most common operations.


Phase 2: Implementation

2.1 Set Up Project Structure

See language-specific guides:

2.2 Implement Core Infrastructure

Create shared utilities:

  • API client with authentication
  • Error handling helpers
  • Response formatting (JSON/Markdown)
  • Pagination support

2.3 Implement Tools

For each tool:

Input Schema:

  • Use Zod (TypeScript) or Pydantic (Python)
  • Include constraints and clear descriptions

Output Schema:

  • Define outputSchema where possible
  • Use structuredContent in responses

Tool Description:

  • Concise summary, parameter descriptions, return type

Annotations:

  • readOnlyHint, destructiveHint, idempotentHint, openWorldHint

Phase 3: Review and Test

3.1 Code Quality

Review for: DRY principle, consistent error handling, full type coverage, clear descriptions.

3.2 Build and Test

TypeScript:

npm run build
npx @modelcontextprotocol/inspector

Python:

python -m py_compile your_server.py
# Test with MCP Inspector

Phase 4: Create Evaluations

Create 10 evaluation questions to test LLM effectiveness with your server.

Requirements for each question:

  • Independent, read-only, complex, realistic, verifiable, stable

Output Format:

<evaluation>
  <qa_pair>
    <question>Your question here</question>
    <answer>Expected answer</answer>
  </qa_pair>
</evaluation>

See Evaluation Guide for complete guidelines.


Docker/Containerization

Transport Security (allowed_hosts)

FastMCP validates Host headers. For Docker, configure:

from mcp.server.fastmcp import FastMCP
from mcp.server.transport_security import TransportSecuritySettings

transport_security = TransportSecuritySettings(
    allowed_hosts=[
        "127.0.0.1:*", "localhost:*", "[::1]:*",
        "mcp-server:*",  # Docker container name
        "0.0.0.0:*",
    ],
)
mcp = FastMCP("my_server", transport_security=transport_security)

Health Check Endpoint

Add /health endpoint via middleware (see references for full example).


Verification

Run: python3 scripts/verify.py

Expected: ✓ building-mcp-servers skill ready

If Verification Fails

  1. Run diagnostic: Check references/ folder exists
  2. Check: All reference files present
  3. Stop and report if still failing

References

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon