
python-skills
by llama-farm
Deploy any AI model, agent, database, RAG, and pipeline locally or remotely in minutes
SKILL.md
name: python-skills description: Shared Python best practices for LlamaFarm. Covers patterns, async, typing, testing, error handling, and security. allowed-tools: Read, Grep, Glob user-invocable: false
Python Skills for LlamaFarm
Shared Python best practices and code review checklists for all Python components in the LlamaFarm monorepo.
Applicable Components
| Component | Path | Python | Key Dependencies |
|---|---|---|---|
| Server | server/ | 3.12+ | FastAPI, Celery, Pydantic, structlog |
| RAG | rag/ | 3.11+ | LlamaIndex, ChromaDB, Celery |
| Universal Runtime | runtimes/universal/ | 3.11+ | PyTorch, transformers, FastAPI |
| Config | config/ | 3.11+ | Pydantic, JSONSchema |
| Common | common/ | 3.10+ | HuggingFace Hub |
Quick Reference
| Topic | File | Key Points |
|---|---|---|
| Patterns | patterns.md | Dataclasses, Pydantic, comprehensions, imports |
| Async | async.md | async/await, asyncio, concurrent execution |
| Typing | typing.md | Type hints, generics, protocols, Pydantic |
| Testing | testing.md | Pytest fixtures, mocking, async tests |
| Errors | error-handling.md | Custom exceptions, logging, context managers |
| Security | security.md | Path traversal, injection, secrets, deserialization |
Code Style
LlamaFarm uses ruff with shared configuration in ruff.toml:
line-length = 88
target-version = "py311"
select = ["E", "F", "I", "B", "UP", "SIM"]
Key rules:
- E, F: Core pyflakes and pycodestyle
- I: Import sorting (isort)
- B: Bugbear (common pitfalls)
- UP: Upgrade syntax to modern Python
- SIM: Simplify code patterns
Architecture Patterns
Settings with pydantic-settings
from pydantic_settings import BaseSettings
class Settings(BaseSettings, env_file=".env"):
LOG_LEVEL: str = "INFO"
HOST: str = "0.0.0.0"
PORT: int = 8000
settings = Settings() # Singleton at module level
Structured Logging with structlog
from core.logging import FastAPIStructLogger # Server
from core.logging import RAGStructLogger # RAG
from core.logging import UniversalRuntimeLogger # Runtime
logger = FastAPIStructLogger(__name__)
logger.info("Operation completed", extra={"count": 10, "duration_ms": 150})
Abstract Base Classes for Extensibility
from abc import ABC, abstractmethod
class Component(ABC):
def __init__(self, name: str, config: dict[str, Any] | None = None):
self.name = name or self.__class__.__name__
self.config = config or {}
@abstractmethod
def process(self, documents: list[Document]) -> ProcessingResult:
pass
Dataclasses for Internal Data
from dataclasses import dataclass, field
@dataclass
class Document:
content: str
metadata: dict[str, Any] = field(default_factory=dict)
id: str = field(default_factory=lambda: str(uuid.uuid4()))
Pydantic Models for API Boundaries
from pydantic import BaseModel, Field, ConfigDict
class EmbeddingRequest(BaseModel):
model: str
input: str | list[str]
encoding_format: Literal["float", "base64"] | None = "float"
model_config = ConfigDict(str_strip_whitespace=True)
Directory Structure
Each Python component follows this structure:
component/
├── pyproject.toml # UV-managed dependencies
├── core/ # Core functionality
│ ├── __init__.py
│ ├── settings.py # Pydantic Settings
│ └── logging.py # structlog setup
├── services/ # Business logic (server)
├── models/ # ML models (runtime)
├── tasks/ # Celery tasks (rag)
├── utils/ # Utility functions
└── tests/
├── conftest.py # Shared fixtures
└── test_*.py
Review Checklist Summary
When reviewing Python code in LlamaFarm:
-
Patterns (Medium priority)
- Modern Python syntax (3.10+ type hints)
- Dataclass vs Pydantic used appropriately
- No mutable default arguments
-
Async (High priority)
- No blocking calls in async functions
- Proper asyncio.Lock usage
- Cancellation handled correctly
-
Typing (Medium priority)
- Complete return type hints
- Generic types parameterized
- Pydantic v2 patterns
-
Testing (Medium priority)
- Fixtures properly scoped
- Async tests use pytest-asyncio
- Mocks cleaned up
-
Errors (High priority)
- Custom exceptions with context
- Structured logging with extra dict
- Proper exception chaining
-
Security (Critical priority)
- Path traversal prevention
- Input sanitization
- Safe deserialization
See individual topic files for detailed checklists with grep patterns.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 500以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


