Back to list
laguagu

postgres-semantic-search

by laguagu

Claude Code skills for AI apps • Next.js 16 • AI SDK 6 • pgvector • bun • Ralph Loop

5🍴 0📅 Jan 23, 2026

SKILL.md


name: postgres-semantic-search description: | PostgreSQL-based semantic and hybrid search with pgvector and ParadeDB. Use when implementing vector search, semantic search, hybrid search, or full-text search in PostgreSQL. Covers pgvector setup, indexing (HNSW, IVFFlat), hybrid search (FTS + BM25 + RRF), ParadeDB as Elasticsearch alternative, and re-ranking with Cohere/cross-encoders. Supports vector(1536) and halfvec(3072) types for OpenAI embeddings.

Triggers: pgvector, vector search, semantic search, hybrid search, embedding search, PostgreSQL RAG, BM25, RRF, HNSW index, similarity search, ParadeDB, pg_search, reranking, Cohere rerank

PostgreSQL Semantic Search

Quick Start

1. Setup

CREATE EXTENSION IF NOT EXISTS vector;

CREATE TABLE documents (
    id SERIAL PRIMARY KEY,
    content TEXT NOT NULL,
    embedding vector(1536)  -- text-embedding-3-small
    -- Or: embedding halfvec(3072)  -- text-embedding-3-large (50% memory)
);
SELECT id, content, 1 - (embedding <=> query_vec) AS similarity
FROM documents
ORDER BY embedding <=> query_vec
LIMIT 10;

3. Add Index (> 10k documents)

CREATE INDEX ON documents USING hnsw (embedding vector_cosine_ops);

Docker Quick Start

# pgvector with PostgreSQL 17
docker run -d --name pgvector-db \
  -e POSTGRES_PASSWORD=postgres \
  -p 5432:5432 \
  pgvector/pgvector:pg17

# Or PostgreSQL 18 (latest)
docker run -d --name pgvector-db \
  -e POSTGRES_PASSWORD=postgres \
  -p 5432:5432 \
  pgvector/pgvector:pg18

# ParadeDB (includes pgvector + pg_search + BM25)
docker run -d --name paradedb \
  -e POSTGRES_PASSWORD=postgres \
  -p 5432:5432 \
  paradedb/paradedb:latest

Connect: psql postgresql://postgres:postgres@localhost:5432/postgres

Cheat Sheet

Distance Operators

embedding <=> query  -- Cosine distance (1 - similarity)
embedding <-> query  -- L2/Euclidean distance
embedding <#> query  -- Negative inner product

Common Queries

-- Top 10 similar (cosine)
SELECT * FROM docs ORDER BY embedding <=> $1 LIMIT 10;

-- With similarity score
SELECT *, 1 - (embedding <=> $1) AS similarity FROM docs ORDER BY 2 DESC LIMIT 10;

-- With threshold
SELECT * FROM docs WHERE embedding <=> $1 < 0.3 ORDER BY 1 LIMIT 10;

-- Preload index (run on startup)
SELECT 1 FROM docs ORDER BY embedding <=> $1 LIMIT 1;

Index Quick Reference

-- HNSW (recommended)
CREATE INDEX ON docs USING hnsw (embedding vector_cosine_ops);

-- With tuning
CREATE INDEX ON docs USING hnsw (embedding vector_cosine_ops)
WITH (m = 24, ef_construction = 200);

-- Query-time recall
SET hnsw.ef_search = 100;

-- Iterative scan for filtered queries (pgvector 0.8+)
SET hnsw.iterative_scan = relaxed_order;
SET ivfflat.iterative_scan = on;

Decision Trees

Choose Search Method

Query type?
├─ Conceptual/meaning-based → Pure vector search
├─ Exact terms/names → Pure keyword search
└─ Mixed/unknown → Hybrid search
    ├─ Simple setup → FTS + RRF (no extra extensions)
    ├─ Better ranking → BM25 + RRF (pg_search extension)
    └─ Full-featured → ParadeDB (Elasticsearch alternative)

Choose Index Type

Document count?
├─ < 10,000 → No index needed
├─ 10k - 1M → HNSW (best recall)
└─ > 1M → IVFFlat (less memory) or HNSW

Choose Vector Type

Embedding model?
├─ text-embedding-3-small (1536) → vector(1536)
├─ text-embedding-3-large (3072) → halfvec(3072) (50% memory savings)
└─ Other models → vector(dimensions)

Operators

OperatorDistanceUse Case
<=>CosineText embeddings (default)
<->L2/EuclideanImage embeddings
<#>Inner productNormalized vectors

SQL Functions

  • match_documents(query_vec, threshold, limit) - Basic search
  • match_documents_filtered(query_vec, metadata_filter, threshold, limit) - With JSONB filter
  • match_chunks(query_vec, threshold, limit) - Search document chunks

Hybrid Search (FTS)

  • hybrid_search_fts(query_vec, query_text, limit, rrf_k, language) - FTS + RRF
  • hybrid_search_weighted(query_vec, query_text, limit, sem_weight, kw_weight) - Linear combination
  • hybrid_search_fallback(query_vec, query_text, limit) - Graceful degradation

Hybrid Search (BM25)

  • hybrid_search_bm25(query_vec, query_text, limit, rrf_k) - BM25 + RRF
  • hybrid_search_bm25_highlighted(...) - With snippet highlighting
  • hybrid_search_chunks_bm25(...) - For RAG with chunks

Re-ranking (Optional)

Two-stage retrieval improves precision: fast recall → precise rerank.

When to Use

  • Results need higher precision
  • Using < 50 candidates after initial search
  • Have budget for API calls (Cohere) or compute (local models)

Options

MethodLatencyQualityCost
Cohere Rerank v4.0-fast~150msExcellent$0.001/query
Cohere Rerank v4.0-pro~300msBest$0.002/query
Zerank 2~100msBestAPI cost
Voyage Rerank 2.5~100msExcellentAPI cost
Cross-encoder (local)~500msVery GoodCompute

TypeScript Example (Cohere)

import { CohereClient } from 'cohere-ai';

const cohere = new CohereClient({ token: process.env.COHERE_API_KEY });

async function rerankResults(query: string, documents: string[]) {
  const response = await cohere.rerank({
    model: 'rerank-v4.0-fast',  // or 'rerank-v4.0-pro' for best quality
    query,
    documents,
    topN: 10,
  });
  return response.results;
}

References

Scripts

Common Patterns

TypeScript Integration (Supabase)

// Semantic search
const { data } = await supabase.rpc('match_documents', {
  query_embedding: embedding,
  match_threshold: 0.7,
  match_count: 10
});

// Hybrid search
const { data } = await supabase.rpc('hybrid_search_fts', {
  query_embedding: embedding,
  query_text: userQuery,
  match_count: 10,
  rrf_k: 60,
  fts_language: 'simple'
});

Drizzle ORM

import { sql } from 'drizzle-orm';

const results = await db.execute(sql`
  SELECT * FROM match_documents(
    ${embedding}::vector(1536),
    0.7,
    10
  )
`);

Troubleshooting

SymptomCauseSolution
Index not used< 10k rows or planner choiceNormal for small tables, check with EXPLAIN
Slow first query (30-60s)HNSW cold-startSELECT pg_prewarm('idx_name') or preload query
Poor recallLow ef_searchSET hnsw.ef_search = 100 or higher
FTS returns nothingWrong language configUse 'simple' for mixed/unknown languages
Memory error on index buildmaintenance_work_mem too lowIncrease to 2GB+
Cosine similarity > 1Vectors not normalizedNormalize before insert or use L2
Slow insertsIndex overheadBatch inserts, consider IVFFlat

Version Info (January 2026)

  • PostgreSQL 18.1: Latest maintenance release with security fixes (Nov 2025)
  • PostgreSQL 17.7: Stable LTS option
  • pgvector 0.8.1: Iterative scans, PostgreSQL 18 support, halfvec up to 4000 dims
  • pg_search 0.21.2: MVCC visibility, parallel aggregation, varchar[] indexing
  • Cohere Rerank v4.0: 32K context, 100+ languages, self-learning (Dec 2025)

External Documentation

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon