
zotero-mcp-code
by kerim
Efficient multi-strategy Zotero search using code execution pattern
SKILL.md
name: zotero-mcp-code description: Search Zotero library using code execution for efficient multi-strategy searches without crash risks. Use this skill when the user needs comprehensive Zotero searches with automatic deduplication and ranking.
Zotero MCP Code Execution Skill
Search your Zotero library using code execution for safe, efficient, comprehensive searches.
🎯 Core Concept
Instead of calling MCP tools directly (which loads all results into context and risks crashes), write Python code that:
- Fetches large datasets (50-100+ items per strategy)
- Filters and ranks in code execution environment
- Returns only top N results to context
Benefits:
- ✅ No crash risk (large data stays in code)
- ✅ Automatic multi-strategy search
- ✅ Automatic deduplication
- ✅ Automatic ranking
- ✅ One function call instead of 5-10
🚀 Basic Usage
For 90% of Zotero searches, use this simple pattern:
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import SearchOrchestrator, format_results
# Single comprehensive search
orchestrator = SearchOrchestrator()
results = orchestrator.comprehensive_search(
"user's query here",
max_results=20 # Return top 20 most relevant
)
# Format and display
print(format_results(results, include_abstracts=True))
This automatically:
- Performs semantic search (multiple variations)
- Performs keyword search (multiple variations)
- Performs tag-based search
- Fetches 100+ items total
- Deduplicates results
- Ranks by relevance
- Returns only top 20 to context
📋 Common Patterns
Pattern 1: Simple Search (Most Common)
User asks: "Find papers about embodied cognition"
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import SearchOrchestrator, format_results
orchestrator = SearchOrchestrator()
results = orchestrator.comprehensive_search("embodied cognition", max_results=20)
print(format_results(results))
Pattern 2: Filtered Search
User asks: "Find recent journal articles about machine learning"
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import ZoteroLibrary, SearchOrchestrator, format_results
library = ZoteroLibrary()
orchestrator = SearchOrchestrator(library)
# Fetch broadly (safe - filtering happens in code)
items = library.search_items("machine learning", limit=100)
# Filter in code
filtered = orchestrator.filter_by_criteria(
items,
item_types=["journalArticle"],
date_range=(2020, 2025)
)
print(format_results(filtered[:15]))
Pattern 3: Author Search
User asks: "What papers do I have by Kahneman?"
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import ZoteroLibrary, format_results
library = ZoteroLibrary()
results = library.search_items(
"Kahneman",
qmode="titleCreatorYear",
limit=50
)
# Sort by date
sorted_results = sorted(results, key=lambda x: x.date, reverse=True)
print(format_results(sorted_results))
Pattern 4: Tag-Based Search
User asks: "Show me papers tagged with 'learning' and 'cognition'"
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import ZoteroLibrary, format_results
library = ZoteroLibrary()
results = library.search_by_tag(["learning", "cognition"], limit=50)
print(format_results(results[:20]))
Pattern 5: Recent Papers
User asks: "What did I recently add?"
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import ZoteroLibrary, format_results
library = ZoteroLibrary()
results = library.get_recent(limit=20)
print(format_results(results))
Pattern 6: Multi-Topic Search
User asks: "Find papers about both cognition and learning"
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import SearchOrchestrator, format_results
orchestrator = SearchOrchestrator()
# Search both topics
results1 = orchestrator.comprehensive_search("cognition", max_results=30)
results2 = orchestrator.comprehensive_search("learning", max_results=30)
# Find intersection
keys1 = {item.key for item in results1}
keys2 = {item.key for item in results2}
common_keys = keys1 & keys2
if common_keys:
common_items = [item for item in results1 if item.key in common_keys]
print("Papers about both topics:")
print(format_results(common_items))
else:
print("No papers found on both topics.")
print("\nCognition results:")
print(format_results(results1[:10]))
print("\nLearning results:")
print(format_results(results2[:10]))
🔧 Advanced Usage
Custom Filtering Logic
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import ZoteroLibrary, SearchOrchestrator, format_results
library = ZoteroLibrary()
orchestrator = SearchOrchestrator(library)
# Fetch large dataset
items = library.search_items("neural networks", limit=100)
# Custom filtering
recent_with_doi = [
item for item in items
if item.doi and item.date and int(item.date[:4]) >= 2020
]
print(format_results(recent_with_doi[:15]))
Multi-Angle Custom Search
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import ZoteroLibrary, SearchOrchestrator, format_results
library = ZoteroLibrary()
orchestrator = SearchOrchestrator(library)
all_results = set()
# Multiple search angles
queries = [
"skill transfer",
"transfer of learning",
"generalization of skills"
]
for query in queries:
results = library.search_items(query, limit=30)
all_results.update(results)
# Rank combined results
ranked = orchestrator._rank_items(list(all_results), "skill transfer")
print(format_results(ranked[:20]))
Iterative Refinement
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import ZoteroLibrary, SearchOrchestrator, format_results
library = ZoteroLibrary()
orchestrator = SearchOrchestrator(library)
# Initial search
initial = library.search_items("memory", limit=50)
# Analyze tags
tag_freq = {}
for item in initial:
for tag in item.tags:
tag_freq[tag] = tag_freq.get(tag, 0) + 1
# Find most common tag
if tag_freq:
most_common_tag = max(tag_freq, key=tag_freq.get)
# Refine search
refined = orchestrator.filter_by_criteria(
initial,
required_tags=[most_common_tag]
)
print(f"Papers with most common tag '{most_common_tag}':")
print(format_results(refined))
📚 API Reference
SearchOrchestrator
Main class for automated searching.
comprehensive_search(query, max_results=20, use_semantic=True, use_keyword=True, use_tags=True, search_limit_per_strategy=50)
Performs multi-strategy search with automatic deduplication and ranking.
Parameters:
query(str): Search querymax_results(int): Maximum results to return (default: 20)use_semantic(bool): Use semantic search (default: True)use_keyword(bool): Use keyword search (default: True)use_tags(bool): Use tag search (default: True)search_limit_per_strategy(int): Items to fetch per strategy (default: 50)
Returns: List of ZoteroItem objects
filter_by_criteria(items, item_types=None, date_range=None, required_tags=None, excluded_tags=None)
Filter items by various criteria.
Parameters:
items(list): Items to filteritem_types(list): Allowed item types (e.g., ["journalArticle"])date_range(tuple): (min_year, max_year)required_tags(list): Tags that must be presentexcluded_tags(list): Tags that must not be present
Returns: Filtered list of ZoteroItem objects
ZoteroLibrary
Low-level interface to Zotero.
search_items(query, qmode="titleCreatorYear", item_type="-attachment", limit=100, tag=None)
Basic keyword search.
semantic_search(query, limit=100, search_type="hybrid")
Semantic/vector search.
search_by_tag(tags, item_type="-attachment", limit=100)
Search by tags.
get_recent(limit=50)
Get recently added items.
get_tags()
Get all tags in library.
format_results(items, include_abstracts=True, max_abstract_length=300)
Format items as markdown.
⚙️ Configuration
Default Parameters
Good defaults for most searches:
orchestrator.comprehensive_search(
query,
max_results=20, # Top 20 results
search_limit_per_strategy=50 # Fetch 50 per strategy
)
Adjusting Search Depth
For quick searches (fewer results, faster):
results = orchestrator.comprehensive_search(
query,
max_results=10,
search_limit_per_strategy=20
)
For thorough searches (more comprehensive):
results = orchestrator.comprehensive_search(
query,
max_results=30,
search_limit_per_strategy=100
)
🔍 How It Works
Behind the Scenes
When you call comprehensive_search("embodied cognition", max_results=20):
-
Semantic Search (if enabled):
- Searches "embodied cognition" (hybrid mode) → 50 items
- Searches "embodied cognition" (vector mode) → 50 items
-
Keyword Search (if enabled):
- Searches with qmode="everything" → 50 items
- Searches with qmode="titleCreatorYear" → 50 items
-
Tag Search (if enabled):
- Extracts words from query
- Finds matching tags in library
- Searches by matching tags → 50 items
-
Processing:
- Combines all results (~250 items)
- Deduplicates using item keys (~120 unique)
- Ranks by relevance score
- Returns top 20
-
Context:
- Only the final 20 items go to LLM context
- All processing happens in code execution environment
Why This Is Better
Old Approach (Direct MCP):
# 5+ function calls, all results to context
results1 = zotero_semantic_search("query", limit=10) # Crash risk if > 15
results2 = zotero_search_items("query", limit=10)
# ... manual deduplication, no ranking
# All items (50+) load into context
New Approach (Code Execution):
# 1 function call, only top results to context
results = orchestrator.comprehensive_search("query", max_results=20)
# Fetches 250+ items, processes in code, returns top 20
🛠️ Error Handling
Always handle potential errors:
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import SearchOrchestrator, format_results
orchestrator = SearchOrchestrator()
try:
results = orchestrator.comprehensive_search("query", max_results=20)
if results:
print(format_results(results))
else:
print("No results found. Try a broader search term.")
except Exception as e:
print(f"Search failed: {e}")
print("Please check your Zotero MCP configuration.")
📖 Examples
See /Users/niyaro/Documents/Code/zotero-code-execution/examples.py for 8 complete working examples.
🎓 Quick Reference
| Task | Code |
|---|---|
| Basic search | orchestrator.comprehensive_search(query, max_results=20) |
| Filter by type | orchestrator.filter_by_criteria(items, item_types=["journalArticle"]) |
| Filter by date | orchestrator.filter_by_criteria(items, date_range=(2020, 2025)) |
| Search author | library.search_items(author, qmode="titleCreatorYear", limit=50) |
| Search by tag | library.search_by_tag([tags], limit=50) |
| Recent items | library.get_recent(limit=20) |
| Format output | format_results(items, include_abstracts=True) |
💡 Tips
- Start simple: Use
comprehensive_search()for most queries - Adjust depth: Use
search_limit_per_strategyto control thoroughness - Filter after: Fetch broadly, filter in code
- Custom logic: Use Python for complex filtering
- Check errors: Always wrap in try/except
📁 Documentation
- Quick Start:
/Users/niyaro/Documents/Code/zotero-code-execution/QUICK_START.md - Full Docs:
/Users/niyaro/Documents/Code/zotero-code-execution/README.md - Examples:
/Users/niyaro/Documents/Code/zotero-code-execution/examples.py - Status:
/Users/niyaro/Documents/Code/zotero-code-execution/HONEST_STATUS.md
⚠️ Important Notes
- This uses code execution, not direct MCP calls
- Large datasets are processed in code, keeping context small
- Semantic search may not be available (falls back to keyword)
- Results are automatically deduplicated and ranked
- Safe to use large limits (100+) because filtering happens in code
🔄 Migration from zotero-mcp
Old pattern:
# Multiple manual MCP calls
results1 = zotero_semantic_search("query", limit=10)
results2 = zotero_search_items("query", limit=10)
# Manual deduplication...
New pattern:
# One function call with code execution
import sys
sys.path.append('/Users/niyaro/Documents/Code/zotero-code-execution')
import setup_paths
from zotero_lib import SearchOrchestrator, format_results
orchestrator = SearchOrchestrator()
results = orchestrator.comprehensive_search("query", max_results=20)
print(format_results(results))
Remember: This skill uses code execution to safely handle large searches. The implementation is in /Users/niyaro/Documents/Code/zotero-code-execution/.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
