Back to list
jr2804

uv-mcp

by jr2804

This project converts MCP server configurations from any format into the one for your coding agent of choice - just by using any available LLM!

2🍴 0📅 Jan 21, 2026

SKILL.md


UV MCP

What I Do

Describe how to steer the uv-mcp server so natural language requests become precise uv workflows. This skill focuses on diagnosing environments, managing dependencies, controlling Python runtimes, and building artifacts with uv while keeping the workspace healthy.

Core Workflows

Environment Health & Setup

IntentToolWhat Happens
Diagnose failures or missing environmentsdiagnose_environmentConfirms pyproject.toml, virtualenv presence, lock sync status, and reports remediation steps.
Repair broken setupsrepair_environmentCreates .venv, installs Python, and syncs dependencies automatically.
Verify/install uv itselfcheck_uv_installation, install_uvChecks uv availability and returns platform-specific install steps when missing.
> "Diagnose the environment"
# Use output to confirm pyproject + venv state
> "Repair the environment"
# Follow-up diagnostics ensure issues are resolved

Dependency Management

ScenarioToolNotes
Add/remove librariesadd_dependency, remove_dependencySupports --dev, optional dependency groups, and updates both config + env.
Keep env aligned with uv.locksync_environmentSyncs or upgrades locked versions; run after lockfile updates.
Inspect or refresh packagescheck_outdated_packages, show_package_infoSurfaces available upgrades and in-depth metadata for any package.

Project Inspection

  • list_dependencies: Lists installed packages; request tree mode for transitive view.
  • analyze_dependency_tree: Visualizes dependency graph depth to spot heavy branches before refactors.

Runtime Management

ActionToolGuidance
List installed interpreterslist_python_versionsShows versions uv already manages.
Install new interpreterinstall_python_versionDownloads and activates the requested Python release.
Pin project runtimepin_python_versionUpdates .python-version to keep CI/CD aligned.

Project Lifecycle

  • init_project: Scaffold a fresh uv-enabled project, ideal for greenfield work.
  • export_requirements: Emit requirements.txt for platforms that expect pip-compatible manifests.

Build & Distribution (uv ≥ 0.6.4)

NeedToolTips
Create wheels/sdistsbuild_projectChoose wheel-only or sdist-only, customize output dir, capture artifact paths.
Refresh lockfile without installinglock_projectUseful after manual pyproject.toml edits or before committing dependency changes.
Clear uv cacheclear_cacheFixes checksum mismatches or frees disk space; target entire cache or a single package.

Diagnostic Workflow Template

  1. diagnose_environment
  2. Review reported issues.
  3. repair_environment
  4. diagnose_environment again.
  5. If still broken: clear_cachelock_projectsync_environment.

Error Handling & Troubleshooting

  • uv-mcp returns structured errors (error, error_code, suggestion). Echo them in summaries so humans know the auto-remediation path.
  • Common scenarios:
    • UV not installed → run install_uv.
    • Missing packagessync_environment.
    • Version conflictsclear_cache then lock_project and sync_environment.
    • Corrupted artifactsclear_cache for that package and re-sync.

When to Use Me

  • Onboarding or repairing uv-based projects without manual shell work.
  • Automating dependency chores (install, remove, upgrade) through MCP.
  • Managing Python runtimes inside CI/CD or multi-OS fleets.
  • Preparing releases: lockfiles, builds, requirements.txt exports.

Best Practices

  1. Diagnose before repair: Always capture the initial state so changes are auditable.
  2. Sync after mutations: Any add_dependency / lock_project call should be followed by sync_environment to keep .venv aligned.
  3. Pin intentionally: Use pin_python_version once a runtime is validated by CI.
  4. Cache hygiene: Run clear_cache when checksum or corruption errors show up, then re-sync immediately.
  5. Capture artifacts: After build_project, record the returned artifact list (wheel + sdist paths) in release notes.

Integration Patterns

  • With python-guidelines: Apply linting/testing standards after uv-mcp modifies dependencies.
  • With python-cli: Use init_project + dependency adds to scaffold CLIs rapidly.
  • With mcp-servers: Document uv-mcp availability in .vscode/mcp.json and keep tool lists lean.

Use this skill whenever the uv-mcp server is the fastest path to maintaining healthy uv environments without leaving the IDE context.

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon