Back to list
gptme

python-repl

by gptme

Your agent in your terminal, equipped with local tools: writes code, uses the terminal, browses the web, vision.

4,148🍴 351📅 Jan 23, 2026

Use Cases

💻

CLI Tool Creation

Streamline command-line tool development. Using python-repl.

🧠

AI Model Integration

Integrate LLM and ML models into your application.

Prompt Optimization

Improve prompts for better results.

📊

Automated Data Analysis

AI-powered data analysis and insight extraction.

SKILL.md


name: python-repl description: Interactive Python REPL automation with common helpers and best practices

Python REPL Skill

Enhances Python REPL workflows with bundled utility functions for data analysis, debugging, and performance profiling.

Overview

This skill bundles Python REPL helpers, common imports, and execution patterns for efficient Python development in gptme.

Bundled Scripts

Helper Functions (python_helpers.py)

This skill includes bundled utility functions for common Python tasks:

  • Data inspection (inspect_df, describe_object)
  • Quick plotting (quick_plot)
  • Performance profiling (time_function)
  • Common imports setup (setup_common_imports)

Usage Patterns

Data Analysis

When working with data, automatically import common libraries and set up display options:

import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 100)

Debugging

Use bundled helpers for debugging:

from python_helpers import inspect_df, describe_object
inspect_df(df)  # Quick dataframe overview
describe_object(obj)  # Object introspection

Dependencies

Required packages are listed in requirements.txt:

  • ipython: Interactive Python shell
  • numpy: Numerical computing
  • pandas: Data manipulation

Best Practices

  1. Use helpers: Leverage bundled helper functions instead of reimplementing
  2. Import once: Common imports are handled by pre-execute hook
  3. Profile performance: Use time_function for performance-sensitive code

Examples

Quick Data Analysis

# Helpers auto-import pandas, numpy
df = pd.read_csv('data.csv')
inspect_df(df)  # Show overview

Performance Profiling

from python_helpers import time_function

@time_function
def slow_operation():
    # Your code here
    pass
  • Tool: ipython

Score

Total Score

90/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon