
python-repl
by gptme
Your agent in your terminal, equipped with local tools: writes code, uses the terminal, browses the web, vision.
Use Cases
CLI Tool Creation
Streamline command-line tool development. Using python-repl.
AI Model Integration
Integrate LLM and ML models into your application.
Prompt Optimization
Improve prompts for better results.
Automated Data Analysis
AI-powered data analysis and insight extraction.
SKILL.md
name: python-repl description: Interactive Python REPL automation with common helpers and best practices
Python REPL Skill
Enhances Python REPL workflows with bundled utility functions for data analysis, debugging, and performance profiling.
Overview
This skill bundles Python REPL helpers, common imports, and execution patterns for efficient Python development in gptme.
Bundled Scripts
Helper Functions (python_helpers.py)
This skill includes bundled utility functions for common Python tasks:
- Data inspection (inspect_df, describe_object)
- Quick plotting (quick_plot)
- Performance profiling (time_function)
- Common imports setup (setup_common_imports)
Usage Patterns
Data Analysis
When working with data, automatically import common libraries and set up display options:
import numpy as np
import pandas as pd
pd.set_option('display.max_rows', 100)
Debugging
Use bundled helpers for debugging:
from python_helpers import inspect_df, describe_object
inspect_df(df) # Quick dataframe overview
describe_object(obj) # Object introspection
Dependencies
Required packages are listed in requirements.txt:
- ipython: Interactive Python shell
- numpy: Numerical computing
- pandas: Data manipulation
Best Practices
- Use helpers: Leverage bundled helper functions instead of reimplementing
- Import once: Common imports are handled by pre-execute hook
- Profile performance: Use time_function for performance-sensitive code
Examples
Quick Data Analysis
# Helpers auto-import pandas, numpy
df = pd.read_csv('data.csv')
inspect_df(df) # Show overview
Performance Profiling
from python_helpers import time_function
@time_function
def slow_operation():
# Your code here
pass
Related
- Tool: ipython
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
