
langchain4j-ai-services-patterns
by giuseppe-trisciuoglio
This repository is a starter kit for building "skills" and "agents" for Claude Code. The current content focuses on patterns, conventions, and agents for Java projects (Spring Boot, JUnit, LangChain4J), but the kit is designed to be extensible and multi-language (PHP, TypeScript, Python, etc.).
SKILL.md
name: langchain4j-ai-services-patterns description: Build declarative AI Services with LangChain4j using interface-based patterns, annotations, memory management, tools integration, and advanced application patterns. Use when implementing type-safe AI-powered features with minimal boilerplate code in Java applications. category: ai-development tags: [langchain4j, ai-services, annotations, declarative, tools, memory, function-calling, llm, java] version: 1.1.0 allowed-tools: Read, Write, Bash
LangChain4j AI Services Patterns
This skill provides guidance for building declarative AI Services with LangChain4j using interface-based patterns, annotations for system and user messages, memory management, tools integration, and advanced AI application patterns that abstract away low-level LLM interactions.
When to Use
Use this skill when:
- Building declarative AI-powered interfaces with minimal boilerplate code
- Creating type-safe AI services with Java interfaces and annotations
- Implementing conversational AI systems with memory management
- Designing AI services that can call external tools and functions
- Building multi-agent systems with specialized AI components
- Creating AI services with different personas and behaviors
- Implementing RAG (Retrieval-Augmented Generation) patterns declaratively
- Building production AI applications with proper error handling and validation
- Creating AI services that return structured data types (enums, POJOs, lists)
- Implementing streaming AI responses with reactive patterns
Overview
LangChain4j AI Services allow you to define AI-powered functionality using plain Java interfaces with annotations, eliminating the need for manual prompt construction and response parsing. This pattern provides type-safe, declarative AI capabilities with minimal boilerplate code.
Quick Start
Basic AI Service Definition
interface Assistant {
String chat(String userMessage);
}
// Create instance - LangChain4j generates implementation
Assistant assistant = AiServices.create(Assistant.class, chatModel);
// Use the service
String response = assistant.chat("Hello, how are you?");
System Message and Templates
interface CustomerSupportBot {
@SystemMessage("You are a helpful customer support agent for TechCorp")
String handleInquiry(String customerMessage);
@UserMessage("Analyze sentiment: {{it}}")
String analyzeSentiment(String feedback);
}
CustomerSupportBot bot = AiServices.create(CustomerSupportBot.class, chatModel);
Memory Management
interface MultiUserAssistant {
String chat(@MemoryId String userId, String userMessage);
}
Assistant assistant = AiServices.builder(MultiUserAssistant.class)
.chatModel(model)
.chatMemoryProvider(userId -> MessageWindowChatMemory.withMaxMessages(10))
.build();
Tool Integration
class Calculator {
@Tool("Add two numbers") double add(double a, double b) { return a + b; }
}
interface MathGenius {
String ask(String question);
}
MathGenius mathGenius = AiServices.builder(MathGenius.class)
.chatModel(model)
.tools(new Calculator())
.build();
Examples
See examples.md for comprehensive practical examples including:
- Basic chat interfaces
- Stateful assistants with memory
- Multi-user scenarios
- Structured output extraction
- Tool calling and function execution
- Streaming responses
- Error handling
- RAG integration
- Production patterns
API Reference
Complete API documentation, annotations, interfaces, and configuration patterns are available in references.md.
Best Practices
- Use type-safe interfaces instead of string-based prompts
- Implement proper memory management with appropriate limits
- Design clear tool descriptions with parameter documentation
- Handle errors gracefully with custom error handlers
- Use structured output for predictable responses
- Implement validation for user inputs
- Monitor performance for production deployments
Dependencies
<!-- Maven -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j</artifactId>
<version>1.8.0</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
<version>1.8.0</version>
</dependency>
// Gradle
implementation 'dev.langchain4j:langchain4j:1.8.0'
implementation 'dev.langchain4j:langchain4j-open-ai:1.8.0'
References
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
