Back to list
filipstrand

mflux-manual-testing

by filipstrand

MLX native implementations of state-of-the-art generative image models

1,780🍴 116📅 Jan 23, 2026

SKILL.md


name: mflux-manual-testing description: Manually validate mflux CLIs by exercising the changed paths and reviewing output images/artifacts.

mflux manual testing

Some regressions (especially in CLIs and image IO) are easiest to catch by running the commands and visually inspecting outputs. This skill provides a lightweight, change-driven manual test checklist.

When to Use

  • You changed any CLI entrypoint(s) under src/mflux/models/**/cli/.
  • You touched callbacks (e.g. stepwise output, memory saver) or metadata/image saving.
  • Tests are green but you want confidence in real command usage.

Strategy (change-driven)

  • Identify what changed on your branch (new flags, default behavior changes, new callbacks, new models).
  • Only run manual checks for the touched areas; don’t try to exercise every CLI.
  • Prefer 1–2 seeds and a small step count (e.g. 4) for fast iteration, unless the change affects convergence/quality.
  • Before manual CLI testing, reinstall the local tool executables so you’re testing the latest code:
uv tool install --force --editable --reinstall --prerelease=allow .

Core CLI checks (pick what’s relevant)

  • Basic generation: run the CLI once with a representative prompt and confirm the output is not “all noise”.
  • Model saving (if relevant): if you touched weight loading/saving or model definitions, run mflux-save for the affected model(s) and verify:
    • the output directory is created
    • the command completes without missing-file errors
  • Run from disk (if relevant): if you touched save/load paths or model resolution, generate from a locally saved model directory by passing --model /full/path/to/saved-model and confirm it runs and produces a sane image.
  • Stepwise outputs (if relevant): run with --stepwise-image-output-dir and confirm:
    • step images are written for each step
    • the final step image matches the final output image qualitatively
    • the composite image is created
  • Low-RAM path (if relevant): run with --low-ram and confirm:
    • generation completes
    • output quality is sane (no unexpected all-noise output)
  • Metadata (if relevant): run with --metadata and confirm the .json is emitted and looks consistent.

Output review (human-in-the-loop)

  • Always point the human reviewer at:
    • the final output image path
    • any stepwise directory / composites
    • any metadata JSON files
  • Ask the human to visually confirm “looks correct” rather than attempting pixel-perfect parity manually.

Notes

  • If the installed uv tool executable behaves differently from uv run python -m ..., prefer the local module run to isolate environment/tooling issues.
  • If you need to reinstall the local tool executables, see the repo rules for the current recommended command.

Score

Total Score

80/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon