Back to list
femto

data-analysis

by femto

👷‍♂️High performance agent framework that can do everything. Minion is designed to execute any type of queries, offering a variety of features that demonstrate its flexibility and intelligence.

105🍴 17📅 Jan 23, 2026

SKILL.md


name: data-analysis description: Analyze datasets and create visualizations version: 1.0.0 author: Minion Team tags: [data, analysis, visualization, pandas] requirements:

  • pandas>=2.0.0
  • matplotlib>=3.7.0
  • numpy>=1.24.0

Data Analysis Skill

Description

This skill helps analyze datasets and create meaningful visualizations. It can handle CSV files, perform statistical analysis, and generate various types of plots.

Usage Instructions

When a user requests data analysis:

  1. Load the dataset: Use pandas to read the data file
  2. Inspect the data: Check shape, columns, data types, and basic statistics
  3. Clean the data: Handle missing values and outliers if necessary
  4. Perform analysis: Calculate relevant statistics based on user's question
  5. Create visualizations: Generate appropriate plots (line, bar, scatter, etc.)
  6. Save results: Export results and visualizations

Available Resources

Scripts

  • scripts/analyze.py: Core analysis functions

    • load_dataset(filepath): Load data from various formats
    • basic_statistics(df): Calculate descriptive statistics
    • detect_outliers(df, column): Identify outliers
    • correlation_analysis(df): Compute correlations
  • scripts/visualize.py: Visualization utilities

    • plot_distribution(df, column): Create distribution plots
    • plot_correlation_matrix(df): Visualize correlation heatmap
    • plot_time_series(df, date_col, value_col): Time series plots
    • save_plot(fig, filename): Save figure to file

References

  • references/examples.md: Usage examples and common patterns
  • references/best_practices.md: Data analysis best practices

Example Prompts

  • "Analyze this CSV file and show me the trends"
  • "Create a visualization of the sales data by month"
  • "Find correlations in this dataset"
  • "Identify outliers in the price column"
  • "Generate a statistical summary of the data"

Output Format

Analysis results should include:

  1. Data overview (shape, columns, types)
  2. Statistical summary
  3. Key insights and findings
  4. Visualizations (saved as PNG files)
  5. Recommendations or next steps

Notes

  • Always inspect data before analysis
  • Handle missing values appropriately
  • Choose visualizations that match the data type
  • Provide clear explanations of findings
  • Save all outputs for user reference

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon