Back to list
dkyazzentwatwa

text-summarizer

by dkyazzentwatwa

My comprehensive, tested + audited, library of skills to use for ChatGPT.

6🍴 0📅 Jan 20, 2026

SKILL.md


name: text-summarizer description: Generate extractive summaries from long text documents. Control summary length, extract key sentences, and process multiple documents.

Text Summarizer

Create concise summaries from long text documents using extractive summarization. Identifies and extracts the most important sentences while preserving meaning.

Quick Start

from scripts.text_summarizer import TextSummarizer

# Summarize text
summarizer = TextSummarizer()
summary = summarizer.summarize(long_text, ratio=0.2)  # 20% of original
print(summary)

# Summarize file
summary = summarizer.summarize_file("article.txt", num_sentences=5)

Features

  • Extractive Summarization: Selects key sentences from original text
  • Length Control: By ratio, sentence count, or word count
  • Multiple Algorithms: TextRank, LSA, frequency-based
  • Key Points: Extract bullet-point summaries
  • Batch Processing: Summarize multiple documents
  • Preserve Structure: Maintains sentence order option

API Reference

Initialization

summarizer = TextSummarizer(
    method="textrank",    # textrank, lsa, frequency
    language="english"
)

Summarization

# By ratio (20% of original length)
summary = summarizer.summarize(text, ratio=0.2)

# By sentence count
summary = summarizer.summarize(text, num_sentences=5)

# By word count
summary = summarizer.summarize(text, max_words=100)

Key Points Extraction

# Get bullet points
points = summarizer.extract_key_points(text, num_points=5)
for point in points:
    print(f"• {point}")

Batch Processing

# Summarize multiple texts
texts = [text1, text2, text3]
summaries = summarizer.summarize_batch(texts, ratio=0.2)

# Summarize files in directory
summaries = summarizer.summarize_directory("./articles/", ratio=0.3)

Options

# Preserve original sentence order
summary = summarizer.summarize(text, preserve_order=True)

# Include title/first sentence
summary = summarizer.summarize(text, include_first=True)

# Minimum sentence length filter
summarizer.min_sentence_length = 10

CLI Usage

# Summarize text file
python text_summarizer.py --input article.txt --ratio 0.2

# Specific sentence count
python text_summarizer.py --input article.txt --sentences 5

# Extract key points
python text_summarizer.py --input article.txt --points 5

# Batch process
python text_summarizer.py --input-dir ./docs --output-dir ./summaries --ratio 0.3

# Output to file
python text_summarizer.py --input article.txt --output summary.txt --ratio 0.2

CLI Arguments

ArgumentDescriptionDefault
--inputInput file pathRequired
--outputOutput file pathstdout
--input-dirDirectory of files-
--output-dirOutput directory-
--ratioSummary ratio (0.0-1.0)0.2
--sentencesNumber of sentences-
--wordsMaximum words-
--pointsExtract N key points-
--methodAlgorithm to usetextrank
--preserve-orderKeep sentence orderFalse

Examples

News Article Summary

summarizer = TextSummarizer()

article = """
[Long news article text...]
"""

# Get a 3-sentence summary
summary = summarizer.summarize(article, num_sentences=3)
print("Summary:")
print(summary)

# Get key points
points = summarizer.extract_key_points(article, num_points=5)
print("\nKey Points:")
for i, point in enumerate(points, 1):
    print(f"{i}. {point}")

Research Paper Abstract

summarizer = TextSummarizer(method="lsa")

paper = open("research_paper.txt").read()

# Create abstract-length summary
abstract = summarizer.summarize(paper, max_words=250)
print(abstract)

Meeting Notes Summary

summarizer = TextSummarizer()

notes = """
Meeting started at 2pm. John presented Q3 results showing 15% growth.
Sarah raised concerns about supply chain delays affecting Q4 projections.
The team discussed mitigation strategies including dual-sourcing.
Budget allocation for marketing was approved at $50k.
Next steps include vendor outreach by Friday.
Follow-up meeting scheduled for next Tuesday.
"""

summary = summarizer.summarize(notes, num_sentences=3)
points = summarizer.extract_key_points(notes, num_points=4)

print("Summary:", summary)
print("\nAction Items:")
for point in points:
    print(f"• {point}")

Batch Document Summarization

summarizer = TextSummarizer()

import os
for filename in os.listdir("./documents"):
    if filename.endswith(".txt"):
        text = open(f"./documents/{filename}").read()
        summary = summarizer.summarize(text, ratio=0.2)

        with open(f"./summaries/{filename}", "w") as f:
            f.write(summary)

        print(f"Summarized: {filename}")

Algorithm Comparison

AlgorithmSpeedQualityBest For
TextRankMediumHighGeneral text
LSAFastGoodTechnical docs
FrequencyFastMediumQuick summaries

Dependencies

nltk>=3.8.0
numpy>=1.24.0
scikit-learn>=1.2.0

Limitations

  • Extractive only (doesn't paraphrase or generate new text)
  • Works best with well-structured text (paragraphs, clear sentences)
  • Very short texts may not summarize well
  • Doesn't understand context deeply (may miss nuance)

Score

Total Score

55/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon