Back to list
dkyazzentwatwa

podcast-splitter

by dkyazzentwatwa

My comprehensive, tested + audited, library of skills to use for ChatGPT.

6🍴 0📅 Jan 20, 2026

SKILL.md


name: podcast-splitter description: Split audio files by detecting silence gaps. Auto-segment podcasts into chapters, remove long silences, and export individual clips.

Podcast Splitter

Automatically split audio files into segments based on silence detection. Perfect for dividing podcasts into chapters, creating clips from long recordings, or removing dead air.

Quick Start

from scripts.podcast_splitter import PodcastSplitter

# Auto-split by silence
splitter = PodcastSplitter("podcast_episode.mp3")
segments = splitter.split_by_silence()
splitter.export_segments("./chapters/")

# Remove long silences
splitter = PodcastSplitter("raw_recording.mp3")
splitter.remove_silence(min_length=2000)  # Remove silences > 2 seconds
splitter.save("clean_recording.mp3")

Features

  • Silence Detection: Configurable threshold and duration
  • Auto-Split: Divide audio at natural breaks
  • Silence Removal: Remove or shorten long pauses
  • Chapter Export: Save individual segments as files
  • Preview Mode: List detected silences without splitting
  • Batch Processing: Process multiple files

API Reference

Initialization

splitter = PodcastSplitter("audio.mp3")

# With custom settings
splitter = PodcastSplitter(
    "audio.mp3",
    silence_thresh=-40,    # dBFS threshold
    min_silence_len=1000,  # Minimum silence length (ms)
    keep_silence=300       # Silence to keep at segment edges (ms)
)

Silence Detection

# Detect silence regions
silences = splitter.detect_silence()
# Returns: [(start_ms, end_ms), (start_ms, end_ms), ...]

# Print silence summary
splitter.print_silence_report()

Splitting

# Split at all detected silences
segments = splitter.split_by_silence()

# Split at silences longer than threshold
segments = splitter.split_by_silence(min_silence_len=3000)

# Limit number of segments
segments = splitter.split_by_silence(max_segments=10)

Silence Removal

# Remove silences longer than threshold
splitter.remove_silence(min_length=2000)  # Remove >2s silences

# Shorten silences to max length
splitter.shorten_silence(max_length=500)  # Cap at 500ms

# Remove leading/trailing silence only
splitter.strip_silence()

Export

# Export all segments
splitter.export_segments(
    output_dir="./chapters/",
    prefix="chapter",       # chapter_01.mp3, chapter_02.mp3
    format="mp3",
    bitrate=192
)

# Export specific segments
splitter.export_segment(0, "intro.mp3")
splitter.export_segment(3, "conclusion.mp3")

# Save modified audio
splitter.save("output.mp3")

CLI Usage

# Split podcast into chapters
python podcast_splitter.py --input episode.mp3 --output-dir ./chapters/

# Detect and list silences (no splitting)
python podcast_splitter.py --input episode.mp3 --detect-only

# Remove long silences
python podcast_splitter.py --input raw.mp3 --output clean.mp3 --remove-silence 2000

# Custom sensitivity
python podcast_splitter.py --input episode.mp3 --output-dir ./chapters/ \
    --threshold -35 --min-silence 2000 --keep-silence 500

CLI Arguments

ArgumentDescriptionDefault
--inputInput audio fileRequired
--outputOutput file (for silence removal)-
--output-dirOutput directory for segments-
--detect-onlyOnly detect/report silencesFalse
--thresholdSilence threshold (dBFS)-40
--min-silenceMinimum silence to detect (ms)1000
--keep-silenceSilence to keep at edges (ms)300
--max-segmentsMaximum segments to createNone
--remove-silenceRemove silences longer than (ms)-
--shorten-silenceCap silence length at (ms)-
--prefixOutput filename prefixsegment
--formatOutput formatmp3
--bitrateOutput bitrate (kbps)192

Examples

Split Interview into Q&A Segments

splitter = PodcastSplitter(
    "interview.mp3",
    silence_thresh=-35,     # Less sensitive (louder threshold)
    min_silence_len=2000,   # Only split on 2+ second pauses
    keep_silence=400        # Keep some silence for natural feel
)

segments = splitter.split_by_silence()
print(f"Found {len(segments)} segments")

splitter.export_segments("./questions/", prefix="qa")

Remove Dead Air from Recording

splitter = PodcastSplitter("raw_recording.mp3")

# Show what would be removed
splitter.print_silence_report()

# Remove silences longer than 3 seconds
splitter.remove_silence(min_length=3000)

# Cap remaining silences at 1 second
splitter.shorten_silence(max_length=1000)

splitter.save("clean_recording.mp3")

Create Highlight Clips

splitter = PodcastSplitter("episode.mp3")
segments = splitter.split_by_silence(min_silence_len=5000)

# Export only segments longer than 30 seconds
for i, segment in enumerate(segments):
    duration = segment['end'] - segment['start']
    if duration > 30000:  # > 30 seconds
        splitter.export_segment(i, f"highlight_{i+1}.mp3")

Batch Process Episodes

import os
from scripts.podcast_splitter import PodcastSplitter

episodes_dir = "./raw_episodes/"
output_dir = "./processed/"

for filename in os.listdir(episodes_dir):
    if filename.endswith('.mp3'):
        filepath = os.path.join(episodes_dir, filename)
        splitter = PodcastSplitter(filepath)

        # Remove long silences
        splitter.remove_silence(min_length=2000)

        # Save cleaned version
        output_path = os.path.join(output_dir, filename)
        splitter.save(output_path)
        print(f"Processed: {filename}")

Preview Silence Detection

splitter = PodcastSplitter("episode.mp3")

# Get detailed silence info
silences = splitter.detect_silence()

print("Detected Silences:")
for i, (start, end) in enumerate(silences):
    duration = (end - start) / 1000
    start_time = start / 1000
    print(f"  {i+1}. {start_time:.1f}s - {duration:.1f}s silence")

# Print summary
splitter.print_silence_report()

Detection Settings Guide

Audio TypeThresholdMin SilenceNotes
Quiet studio-50 dBFS500msVery sensitive
Normal podcast-40 dBFS1000msDefault
Noisy recording-35 dBFS1500msLess sensitive
Music with breaks-30 dBFS2000msFor spoken breaks

Adjusting Sensitivity

  • More splits: Lower threshold (e.g., -50), shorter min_silence
  • Fewer splits: Higher threshold (e.g., -30), longer min_silence
  • Natural feel: Longer keep_silence (500-1000ms)
  • Tight edits: Shorter keep_silence (100-200ms)

Dependencies

pydub>=0.25.0

Note: Requires FFmpeg installed on system.

Limitations

  • Works best with speech content (not music)
  • Very noisy recordings may need threshold adjustment
  • Long files use significant memory
  • No automatic chapter naming (manual rename needed)

Score

Total Score

55/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon