
dagster-conventions
by dagster-io
A collection of Claude Code plugins for working with Dagster.
SKILL.md
name: dagster-conventions description: Expert guidance for Dagster data orchestration including assets, resources, schedules, sensors, partitions, testing, and ETL patterns. Use when building or extending Dagster projects, writing assets, configuring automation, or integrating with dbt/dlt/Sling.
Dagster Development Expert
Core Philosophy
Think in Assets: Dagster is built around the asset abstraction—persistent objects like tables, files, or models that your pipeline produces. Assets provide:
- Clear Lineage: Explicit dependencies define data flow
- Better Observability: Track what data exists and how it was created
- Improved Testability: Assets are just Python functions that can be tested directly
- Declarative Pipelines: Focus on what to produce, not how to execute
Assets over Ops: For most data pipelines, prefer assets over ops. Use ops only when the asset abstraction doesn't fit (non-data workflows, complex execution patterns).
Environment Separation: Use resources and EnvVar to maintain separate configurations for dev, staging, and production without code changes.
Quick Reference
| If you're writing... | Check this section/reference |
|---|---|
@dg.asset | Assets or references/assets.md |
ConfigurableResource | Resources or references/resources.md |
AutomationCondition | Declarative Automation or references/automation.md |
@dg.schedule or ScheduleDefinition | Automation or references/automation.md |
@dg.sensor | Sensors or references/automation.md |
PartitionsDefinition | Partitions or references/automation.md |
Tests with dg.materialize() | Testing or references/testing.md |
@asset_check | references/testing.md#asset-checks |
@dlt_assets or @sling_assets | references/etl-patterns.md |
@dbt_assets | dbt Integration or dbt-development skill |
Definitions or code locations | references/project-structure.md |
Components (defs.yaml) | references/project-structure.md#components |
Core Concepts
Asset: A persistent object (table, file, model) that your pipeline produces. Define with @dg.asset.
Resource: External services/tools (databases, APIs) shared across assets. Define with ConfigurableResource.
Job: A selection of assets to execute together. Create with dg.define_asset_job().
Schedule: Time-based automation for jobs. Create with dg.ScheduleDefinition.
Sensor: Event-driven automation that watches for changes. Define with @dg.sensor.
Partition: Logical divisions of data (by date, category). Define with PartitionsDefinition.
Definitions: The container for all Dagster objects in a code location.
Component: Reusable, declarative building blocks that generate Definitions from configuration (YAML). Use for standardized patterns.
Declarative Automation: Modern automation framework where you set conditions on assets rather than scheduling jobs.
Assets Quick Reference
Basic Asset
import dagster as dg
@dg.asset
def my_asset() -> None:
"""Asset description appears in the UI."""
# Your computation logic here
pass
Asset with Dependencies
@dg.asset
def downstream_asset(upstream_asset) -> dict:
"""Depends on upstream_asset by naming it as a parameter."""
return {"processed": upstream_asset}
Asset with Metadata
@dg.asset(
group_name="analytics",
key_prefix=["warehouse", "staging"],
description="Cleaned customer data",
owners=["team:data-engineering", "alice@example.com"],
tags={"priority": "high", "domain": "sales"},
code_version="1.2.0",
)
def customers() -> None:
pass
Best Practices:
- Naming: Use nouns describing what is produced (
customers,daily_revenue), not verbs (load_customers) - Tags: Primary mechanism for organization (use liberally)
- Owners: Specify team or individual owners for accountability
- code_version: Track when asset logic changes for lineage
Resources Quick Reference
Define a Resource
from dagster import ConfigurableResource
class DatabaseResource(ConfigurableResource):
connection_string: str
def query(self, sql: str) -> list:
# Implementation here
pass
Use in Assets
@dg.asset
def my_asset(database: DatabaseResource) -> None:
results = database.query("SELECT * FROM table")
Register in Definitions
dg.Definitions(
assets=[my_asset],
resources={"database": DatabaseResource(connection_string="...")},
)
Automation Quick Reference
Schedule
import dagster as dg
from my_project.defs.jobs import my_job
my_schedule = dg.ScheduleDefinition(
job=my_job,
cron_schedule="0 0 * * *", # Daily at midnight
)
Common Cron Patterns
| Pattern | Meaning |
|---|---|
0 * * * * | Every hour |
0 0 * * * | Daily at midnight |
0 0 * * 1 | Weekly on Monday |
0 0 1 * * | Monthly on the 1st |
0 0 5 * * | Monthly on the 5th |
Declarative Automation Quick Reference
Modern automation pattern: Set conditions on assets instead of scheduling jobs.
AutomationCondition Examples
from dagster import AutomationCondition
# Update when upstream data changes
@dg.asset(
automation_condition=AutomationCondition.on_missing()
)
def my_asset() -> None:
pass
# Update daily at a specific time
@dg.asset(
automation_condition=AutomationCondition.on_cron("0 9 * * *")
)
def daily_report() -> None:
pass
# Combine conditions
@dg.asset(
automation_condition=(
AutomationCondition.on_missing()
| AutomationCondition.on_cron("0 0 * * *")
)
)
def flexible_asset() -> None:
pass
Benefits over Schedules:
- More expressive condition logic
- Asset-native (no separate job definitions needed)
- Automatic dependency-aware execution
- Better for complex automation scenarios
When to Use:
- Asset-centric pipelines with complex update logic
- Condition-based triggers (data availability, freshness)
- Prefer over schedules for new projects
Sensors Quick Reference
Basic Sensor Pattern
@dg.sensor(job=my_job)
def my_sensor(context: dg.SensorEvaluationContext):
# 1. Read cursor (previous state)
previous_state = json.loads(context.cursor) if context.cursor else {}
current_state = {}
runs_to_request = []
# 2. Check for changes
for item in get_items_to_check():
current_state[item.id] = item.modified_at
if item.id not in previous_state or previous_state[item.id] != item.modified_at:
runs_to_request.append(dg.RunRequest(
run_key=f"run_{item.id}_{item.modified_at}",
run_config={...}
))
# 3. Return result with updated cursor
return dg.SensorResult(
run_requests=runs_to_request,
cursor=json.dumps(current_state)
)
Key: Use cursors to track state between sensor evaluations.
Partitions Quick Reference
Time-Based Partition
weekly_partition = dg.WeeklyPartitionsDefinition(start_date="2023-01-01")
@dg.asset(partitions_def=weekly_partition)
def weekly_data(context: dg.AssetExecutionContext) -> None:
partition_key = context.partition_key # e.g., "2023-01-01"
# Process data for this partition
Static Partition
region_partition = dg.StaticPartitionsDefinition(["us-east", "us-west", "eu"])
@dg.asset(partitions_def=region_partition)
def regional_data(context: dg.AssetExecutionContext) -> None:
region = context.partition_key
Partition Types
| Type | Use Case |
|---|---|
DailyPartitionsDefinition | One partition per day |
WeeklyPartitionsDefinition | One partition per week |
MonthlyPartitionsDefinition | One partition per month |
HourlyPartitionsDefinition | One partition per hour |
StaticPartitionsDefinition | Fixed set of partitions |
DynamicPartitionsDefinition | Partitions created at runtime |
MultiPartitionsDefinition | Combine multiple partition dimensions |
Best Practice: Limit partitions to 100,000 or fewer per asset for optimal UI performance.
Testing Quick Reference
Direct Function Testing
def test_my_asset():
result = my_asset()
assert result == expected_value
Testing with Materialization
def test_asset_graph():
result = dg.materialize(
assets=[asset_a, asset_b],
resources={"database": mock_database},
)
assert result.success
assert result.output_for_node("asset_b") == expected
Mocking Resources
from unittest.mock import Mock
def test_with_mocked_resource():
mocked_resource = Mock()
mocked_resource.query.return_value = [{"id": 1}]
result = dg.materialize(
assets=[my_asset],
resources={"database": mocked_resource},
)
assert result.success
Asset Checks
@dg.asset_check(asset=my_asset)
def validate_non_empty(my_asset):
return dg.AssetCheckResult(
passed=len(my_asset) > 0,
metadata={"row_count": len(my_asset)},
)
dbt Integration
For dbt integration, prefer the component-based approach for standard dbt projects. Use Pythonic assets only when you need custom logic or fine-grained control.
Component-Based dbt (Recommended)
Use DbtProjectComponent with remote Git repository:
# defs/transform/defs.yaml
type: dagster_dbt.DbtProjectComponent
attributes:
project:
repo_url: https://github.com/dagster-io/jaffle-platform.git
repo_relative_path: jdbt
dbt:
target: dev
When to use:
- Standard dbt transformations
- Remote dbt project in Git repository
- Declarative configuration preferred
- Component reusability desired
For private repositories:
attributes:
project:
repo_url: https://github.com/your-org/dbt-project.git
repo_relative_path: dbt
token: '{{ env.GIT_TOKEN }}'
dbt:
target: dev
Pythonic dbt Assets
For custom logic or local development:
from dagster_dbt import DbtCliResource, dbt_assets
from pathlib import Path
dbt_project_dir = Path(__file__).parent / "dbt_project"
@dbt_assets(manifest=dbt_project_dir / "target" / "manifest.json")
def my_dbt_assets(context: dg.AssetExecutionContext, dbt: DbtCliResource):
yield from dbt.cli(["build"], context=context).stream()
dg.Definitions(
assets=[my_dbt_assets],
resources={"dbt": DbtCliResource(project_dir=dbt_project_dir)},
)
When to use:
- Custom transformation logic needed
- Local development with frequent dbt code changes
- Fine-grained control over dbt execution
Full patterns: See Dagster dbt docs
When to Load References
Load references/assets.md when:
- Defining complex asset dependencies
- Adding metadata, groups, or key prefixes
- Working with asset factories
- Understanding asset materialization patterns
Load references/resources.md when:
- Creating custom
ConfigurableResourceclasses - Integrating with databases, APIs, or cloud services
- Understanding resource scoping and lifecycle
Load references/automation.md when:
- Creating schedules with complex cron patterns
- Building sensors with cursors and state management
- Implementing partitions and backfills
- Using declarative automation conditions
- Automating dbt or other integration runs
Load references/testing.md when:
- Writing unit tests for assets
- Mocking resources and dependencies
- Using
dg.materialize()for integration tests - Creating asset checks for data validation
Load references/etl-patterns.md when:
- Using dlt for embedded ETL
- Using Sling for database replication
- Loading data from files or APIs
- Integrating external ETL tools
Load references/project-structure.md when:
- Setting up a new Dagster project
- Configuring
Definitionsand code locations - Using
dgCLI for scaffolding - Organizing large projects with Components
Project Structure
Recommended Layout
my_project/
├── pyproject.toml
├── src/
│ └── my_project/
│ ├── definitions.py # Main Definitions
│ └── defs/
│ ├── assets/
│ │ ├── __init__.py
│ │ └── my_assets.py
│ ├── jobs.py
│ ├── schedules.py
│ ├── sensors.py
│ └── resources.py
└── tests/
└── test_assets.py
Definitions Pattern (Modern)
Auto-Discovery (Simplest):
# src/my_project/definitions.py
from dagster import Definitions
from dagster_dg import load_defs
# Automatically discovers all definitions in defs/ folder
defs = Definitions.merge(
load_defs()
)
Combining Components with Pythonic Assets:
# src/my_project/definitions.py
from dagster import Definitions
from dagster_dg import load_defs
from my_project.assets import custom_assets
# Load component definitions from defs/ folder
component_defs = load_defs()
# Define pythonic assets separately
pythonic_defs = Definitions(
assets=custom_assets,
resources={...}
)
# Merge them together
defs = Definitions.merge(component_defs, pythonic_defs)
Traditional (Explicit):
# src/my_project/definitions.py
from dagster import Definitions
from my_project.defs import assets, jobs, schedules, resources
defs = Definitions(
assets=assets,
jobs=jobs,
schedules=schedules,
resources=resources,
)
Scaffolding with dg CLI
# Create new project
uvx create-dagster my_project
# Scaffold new asset file
dg scaffold defs dagster.asset assets/new_asset.py
# Scaffold schedule
dg scaffold defs dagster.schedule schedules.py
# Scaffold sensor
dg scaffold defs dagster.sensor sensors.py
# Validate definitions
dg check defs
Common Patterns
Job Definition
trip_update_job = dg.define_asset_job(
name="trip_update_job",
selection=["taxi_trips", "taxi_zones"],
)
Run Configuration
from dagster import Config
class MyAssetConfig(Config):
filename: str
limit: int = 100
@dg.asset
def configurable_asset(config: MyAssetConfig) -> None:
print(f"Processing {config.filename} with limit {config.limit}")
Asset Dependencies with External Sources
@dg.asset(deps=["external_table"])
def derived_asset() -> None:
"""Depends on external_table which isn't managed by Dagster."""
pass
Anti-Patterns to Avoid
| Anti-Pattern | Better Approach |
|---|---|
| Hardcoding credentials in assets | Use ConfigurableResource with env vars |
| Giant assets that do everything | Split into focused, composable assets |
| Ignoring asset return types | Use type annotations for clarity |
| Skipping tests for assets | Test assets like regular Python functions |
| Not using partitions for time-series | Use DailyPartitionsDefinition etc. |
| Putting all assets in one file | Organize by domain in separate modules |
CLI Quick Reference
dg CLI (Recommended for Modern Projects)
# Development
dg dev # Start Dagster UI (port 3000)
dg check defs # Validate definitions load correctly
dg list defs # Show all loaded definitions
dg list components # Show available components
# Scaffolding
dg scaffold defs dagster.asset assets/file.py
dg scaffold defs dagster.schedule schedules.py
dg scaffold defs dagster.sensor sensors.py
dg scaffold defs dagster.resources resources.py
# Execution
dg launch --assets my_asset # Materialize specific asset
dg launch --assets "*" # Materialize all assets
dagster CLI (Legacy/General Purpose)
# Use for non-dg projects or advanced scenarios
dagster dev # Start Dagster UI
dagster job execute -j my_job # Execute a job
dagster asset materialize -a my_asset # Materialize an asset
Use dg CLI for projects created with create-dagster. It provides auto-discovery, scaffolding, and modern workflow support.
References
- Assets:
references/assets.md- Detailed asset patterns - Resources:
references/resources.md- Resource configuration - Automation:
references/automation.md- Schedules, sensors, partitions - Testing:
references/testing.md- Testing patterns and asset checks - ETL Patterns:
references/etl-patterns.md- dlt, Sling, file/API ingestion - Project Structure:
references/project-structure.md- Definitions, Components - Official Docs: https://docs.dagster.io
- API Reference: https://docs.dagster.io/api/dagster
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

