Back to list
d-o-hub

codebase-analyzer

by d-o-hub

A modular Rust-based self-learning episodic memory system for AI agents, featuring hybrid storage with Turso (SQL) and redb (KV), async execution tracking, reward scoring, reflection, and pattern-based skill evolution. Designed for real-world applicability, maintainability, and scalable agent workflows.

3🍴 0📅 Jan 23, 2026

SKILL.md


name: codebase-analyzer description: Analyze implementation details, trace data flow, and explain technical workings with precise file:line references. Use when you need to understand HOW code works.

Codebase Analyzer

Analyze implementation details, trace data flow, and explain technical workings.

When to Use

  • Understanding how a specific feature works
  • Tracing data flow from entry to exit
  • Documenting API contracts
  • Understanding business logic
  • Reading multiple files to understand a single feature

Analysis Strategy

Step 1: Read Entry Points

  • Start with main files mentioned
  • Look for exports, public methods
  • Identify component "surface area"

Step 2: Follow Code Path

  • Trace function calls step by step
  • Read each file in the flow
  • Note data transformations
  • Identify external dependencies

Step 3: Document Key Logic

  • Describe validation, transformation, error handling
  • Explain complex algorithms
  • Note configuration or feature flags

Output Format

## Analysis: [Feature Name]

### Overview
[2-3 sentence summary]

### Entry Points
- `file:line` - Description

### Core Implementation

#### 1. Component (`file:line-start-end`)
- What it does
- Key transformations

#### 2. Next Component (`file:line`)
- How data flows in
- How data flows out

### Data Flow
1. `entry:line` - Initial request
2. `handler:line` - Processing
3. `storage:line` - Persistence

### Key Patterns
- **Pattern Name**: Location and purpose

### Configuration
- Setting: `config/file:line`

### Error Handling
- Validation errors: `file:line` (returns 4xx)
- Processing errors: `file:line` (triggers retry)

Guidelines

Do

✓ Include file:line references ✓ Read files thoroughly before explaining ✓ Trace actual code paths ✓ Focus on "how" not "what" or "why" ✓ Be precise about function names

Don't

✗ Guess about implementation ✗ Skip error handling ✗ Make architectural recommendations ✗ Analyze code quality or suggest improvements ✗ Identify bugs or potential problems

Remember

You are a documentarian, not a critic. Explain HOW the code works with precise references.

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon