Back to list
d-o-hub

episode-start

by d-o-hub

A modular Rust-based self-learning episodic memory system for AI agents, featuring hybrid storage with Turso (SQL) and redb (KV), async execution tracking, reward scoring, reflection, and pattern-based skill evolution. Designed for real-world applicability, maintainability, and scalable agent workflows.

3🍴 0📅 Jan 23, 2026

SKILL.md


name: episode-start description: Start a new learning episode in the self-learning memory system with proper context. Use this skill when beginning a new task that should be tracked for learning from execution patterns.

Episode Start

Start a new learning episode in the self-learning memory system.

Purpose

Create a new episode record with proper context for the memory backend to learn from execution patterns.

Steps

  1. Understand the task: Parse the task description and identify:

    • Task type (implementation, debugging, refactoring, testing)
    • Domain (storage, patterns, retrieval, testing, etc.)
    • Language context (Rust/Tokio/async patterns)
  2. Prepare TaskContext: Ensure you have:

    • language: "rust"
    • domain: One of [storage, patterns, retrieval, embedding, testing, ci]
    • tags: Array of relevant tags (e.g., ["turso", "async", "tokio"])
  3. Create episode: Call SelfLearningMemory::start_episode(task_description, context)

    • Task description should be clear and concise (1-2 sentences)
    • Include relevant context from the user's request
  4. Store episode_id: Keep the episode ID for logging subsequent steps

  5. Initialize step logging: Prepare to log execution steps with:

    • Tool used
    • Action taken
    • Latency/tokens (if applicable)
    • Success status
    • Observations

Storage Requirements

  • Persist to Turso (durable storage)
  • Cache in redb (fast access)
  • Store context as JSON blob

Example

let context = TaskContext {
    language: "rust".to_string(),
    domain: "storage".to_string(),
    tags: vec!["turso".to_string(), "async".to_string()],
};

let episode_id = memory
    .start_episode(
        "Implement async batch pattern updates",
        context
    )
    .await?;

Notes

  • Always validate that both Turso and redb connections are healthy
  • Use anyhow::Result for error handling
  • Log any initialization failures with context

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon