
agent-memory
by btafoya
A collection of skills for Claude Code that extend AI agent capabilities with persistent memory, specialized tools, and reusable workflows
SKILL.md
name: agent-memory description: Persistent memory system for AI agents with semantic, episodic, and procedural memory types. Use when users want to (1) remember facts, preferences, or context across sessions, (2) track interaction history and experiences, (3) store reusable workflows or procedures, (4) build personalized agents that learn from conversations, or (5) implement any form of long-term memory for AI applications.
Agent Memory Skill
Implements a 4-layer cognitive memory architecture for AI agents:
Internal Knowledge (LLM weights) ← frozen
↑
Context Window (per inference) ← this skill helps populate
↑
Short-Term Memory (session state)
↑
Long-Term Memory (persistent storage)
├── Semantic (facts)
├── Episodic (experiences)
└── Procedural (workflows)
Quick Start
from memory import MemoryStore
store = MemoryStore()
# Add semantic memory (facts)
store.add_fact("User prefers TypeScript over JavaScript")
# Add episodic memory (timestamped experience)
store.add_episode("Helped debug authentication issue", topic="auth")
# Add procedural memory (workflow)
store.add_procedure("deploy", ["Run tests", "Build", "Push", "Deploy"])
# Search and retrieve
results = store.search("TypeScript")
context = store.build_context("authentication") # For prompt injection
Memory Types
| Type | Purpose | Example |
|---|---|---|
| Semantic | Facts, preferences, relationships | "User is a Python developer" |
| Episodic | Timestamped experiences | "[2025-01-15] Debugged JWT expiry issue" |
| Procedural | Workflows, multi-step procedures | "Code review: 1. Check types, 2. Review errors..." |
Core Operations
Adding Memories
# Semantic: timeless facts
store.add_fact("Project uses PostgreSQL", project="myapp")
# Episodic: what happened when
store.add_episode("User frustrated with Docker networking", emotion="frustrated")
# Procedural: how to do things
store.add_procedure("code_review", [
"Check type hints",
"Review error handling",
"Verify test coverage"
], trigger="user asks for code review")
Updating Facts
Handle the "brother changed jobs" problem—don't just add new facts, update existing ones:
store.update_fact(
"User's brother is a software engineer",
"User's brother is now a doctor"
)
Retrieval
# Search (graph backend enables relationship traversal)
results = store.search("database", category="semantic", limit=5)
# Get specific memory types
facts = store.get_by_category("semantic")
recent = store.get_recent_episodes(limit=10)
procedure = store.get_procedure("deploy")
Context Engineering
Build context for LLM prompts from relevant memories:
context = store.build_context(
query="API authentication",
max_facts=10,
max_episodes=5,
include_procedures=True
)
# Returns formatted string ready for prompt injection
Integration Patterns
Pattern 1: CLAUDE.md Injection
Export memories and paste into project's CLAUDE.md:
python -c "from memory import get_store; print(get_store().export_for_prompt())"
Pattern 2: MCP Server
Run scripts/mcp_server.py as an MCP server for direct tool access.
Setup:
# Install dependencies with pipx
pipx install mcp
pipx install cogdb # For graph backend (default)
Add to Claude Code config (~/.config/claude-code/config.json):
{
"mcpServers": {
"memory": {
"command": "python",
"args": ["/path/to/agent-memory-skill/scripts/mcp_server.py"]
}
}
}
Available tools: memory_add_fact, memory_add_episode, memory_add_procedure, memory_search, memory_get_context, memory_stats
Pattern 3: Session Hooks
# At session start: load relevant context
context = store.build_context(user_query)
# During session: record significant interactions
store.add_episode("Helped with X", outcome="success")
# At session end: extract and save new facts
store.add_fact("User prefers functional patterns")
Storage
By default, memories persist to ~/.claude_memory/graph/ using CogDB for relationship-aware storage.
For zero-dependency fallback, use MemoryStore(backend="json") which stores to ~/.claude_memory/memories.json.
For enhanced production use, consider adding vector similarity using embeddings (OpenAI, sentence-transformers) alongside the graph storage.
References
- See
references/memory-theory.mdfor cognitive science background - See
references/storage-patterns.mdfor advanced storage options (entities, knowledge graphs)
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
3ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
