
langchain-framework
by bobmatnyc
Remote terminal control system with AI assistance - Control tmux and iTerm2 sessions via REST API with LLM-powered intelligent assistance
SKILL.md
name: langchain-framework description: LangChain LLM application framework with chains, agents, RAG, and memory for building AI-powered applications. Use when implementing RAG (Retrieval Augmented Generation), creating AI agents with tools, or chaining multiple LLM calls.
LangChain Framework
progressive_disclosure: entry_point: summary: "LLM application framework with chains, agents, RAG, and memory" when_to_use: - "When building LLM-powered applications" - "When implementing RAG (Retrieval Augmented Generation)" - "When creating AI agents with tools" - "When chaining multiple LLM calls" quick_start: - "pip install langchain langchain-anthropic" - "Set up LLM (ChatAnthropic or ChatOpenAI)" - "Create chain with prompts and LLM" - "Invoke chain with input" token_estimate: entry: 85 full: 5200
Core Concepts
LangChain Expression Language (LCEL)
Modern composable syntax for building chains with | operator.
Basic Chain:
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
# Components
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
output_parser = StrOutputParser()
# Compose with LCEL
chain = prompt | llm | output_parser
# Invoke
result = chain.invoke({"topic": "programming"})
Why LCEL:
- Type safety and auto-completion
- Streaming support built-in
- Async by default
- Observability with LangSmith
- Easier debugging
Chain Components
Prompts:
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
# Simple template
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
("user", "{input}")
])
# With message history
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
MessagesPlaceholder(variable_name="history"),
("user", "{input}")
])
# Few-shot examples
from langchain_core.prompts import FewShotChatMessagePromptTemplate
examples = [
{"input": "2+2", "output": "4"},
{"input": "3*5", "output": "15"}
]
example_prompt = ChatPromptTemplate.from_messages([
("human", "{input}"),
("ai", "{output}")
])
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples
)
LLMs:
# Anthropic Claude
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(
model="claude-3-5-sonnet-20241022",
temperature=0.7,
max_tokens=1024,
timeout=60.0
)
# OpenAI
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model="gpt-4-turbo-preview",
temperature=0.7
)
# Streaming
for chunk in llm.stream("Tell me a story"):
print(chunk.content, end="", flush=True)
Output Parsers:
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
# String parser
str_parser = StrOutputParser()
# JSON parser
json_parser = JsonOutputParser()
# Structured output
class Person(BaseModel):
name: str = Field(description="Person's name")
age: int = Field(description="Person's age")
parser = PydanticOutputParser(pydantic_object=Person)
prompt = ChatPromptTemplate.from_template(
"Extract person info.\n{format_instructions}\n{query}"
)
chain = prompt | llm | parser
RAG (Retrieval Augmented Generation)
Document Loading
from langchain_community.document_loaders import (
TextLoader,
PyPDFLoader,
DirectoryLoader,
WebBaseLoader
)
# Text files
loader = TextLoader("document.txt")
docs = loader.load()
# PDFs
loader = PyPDFLoader("document.pdf")
docs = loader.load()
# Directory of files
loader = DirectoryLoader(
"./docs",
glob="**/*.md",
show_progress=True
)
docs = loader.load()
# Web pages
loader = WebBaseLoader("https://example.com")
docs = loader.load()
Text Splitting
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
TokenTextSplitter
)
# Recursive splitter (recommended)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
chunks = text_splitter.split_documents(docs)
# Token-aware splitting
from langchain.text_splitter import TokenTextSplitter
splitter = TokenTextSplitter(
chunk_size=512,
chunk_overlap=50
)
Vector Stores
from langchain_community.vectorstores import Chroma, FAISS, Pinecone
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceEmbeddings
# Embeddings
embeddings = OpenAIEmbeddings()
# Chroma (local, persistent)
vectorstore = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
persist_directory="./chroma_db"
)
# FAISS (local, in-memory)
vectorstore = FAISS.from_documents(
documents=chunks,
embedding=embeddings
)
vectorstore.save_local("./faiss_index")
# Pinecone (cloud)
from langchain_community.vectorstores import Pinecone
import pinecone
pinecone.init(api_key="your-key", environment="us-west1-gcp")
vectorstore = Pinecone.from_documents(
documents=chunks,
embedding=embeddings,
index_name="langchain-index"
)
RAG Chain
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
# Create retriever
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 4}
)
# RAG prompt
template = """Answer based on context:
Context: {context}
Question: {question}
Answer:"""
prompt = ChatPromptTemplate.from_template(template)
# Format documents
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# RAG chain
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Query
answer = rag_chain.invoke("What is LangChain?")
Advanced RAG Patterns
# Multi-query retrieval
from langchain.retrievers.multi_query import MultiQueryRetriever
retriever = MultiQueryRetriever.from_llm(
retriever=vectorstore.as_retriever(),
llm=llm
)
# Contextual compression
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=vectorstore.as_retriever()
)
# Parent document retriever
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
store = InMemoryStore()
retriever = ParentDocumentRetriever(
vectorstore=vectorstore,
docstore=store,
child_splitter=text_splitter
)
Agents and Tools
Tool Creation
from langchain.tools import tool
from langchain_core.tools import Tool
# Decorator approach
@tool
def search_wikipedia(query: str) -> str:
"""Search Wikipedia for information."""
# Implementation
return f"Results for: {query}"
# Class approach
from langchain.tools import BaseTool
from pydantic import BaseModel, Field
class CalculatorInput(BaseModel):
expression: str = Field(description="Mathematical expression")
class CalculatorTool(BaseTool):
name = "calculator"
description = "Useful for math calculations"
args_schema = CalculatorInput
def _run(self, expression: str) -> str:
return str(eval(expression))
# Pre-built tools
from langchain_community.tools import (
DuckDuckGoSearchRun,
WikipediaQueryRun,
PythonREPLTool
)
search = DuckDuckGoSearchRun()
wikipedia = WikipediaQueryRun()
python_repl = PythonREPLTool()
Agent Types
from langchain.agents import create_react_agent, AgentExecutor
from langchain import hub
# ReAct agent (recommended)
prompt = hub.pull("hwchase17/react")
tools = [search_wikipedia, CalculatorTool()]
agent = create_react_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
max_iterations=3,
handle_parsing_errors=True
)
result = agent_executor.invoke({"input": "What is 2+2 and who invented addition?"})
# Structured chat agent (function calling)
from langchain.agents import create_structured_chat_agent
agent = create_structured_chat_agent(llm, tools, prompt)
# OpenAI functions agent
from langchain.agents import create_openai_functions_agent
agent = create_openai_functions_agent(llm, tools, prompt)
Agent with Memory
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=True
)
# Conversational loop
while True:
user_input = input("You: ")
if user_input.lower() == "exit":
break
response = agent_executor.invoke({"input": user_input})
print(f"Agent: {response['output']}")
Memory Systems
Memory Types
from langchain.memory import (
ConversationBufferMemory,
ConversationBufferWindowMemory,
ConversationSummaryMemory,
ConversationSummaryBufferMemory
)
# Full conversation history
memory = ConversationBufferMemory(return_messages=True)
# Last K messages
memory = ConversationBufferWindowMemory(k=5, return_messages=True)
# Summarized history
memory = ConversationSummaryMemory(llm=llm, return_messages=True)
# Summary + recent buffer
memory = ConversationSummaryBufferMemory(
llm=llm,
max_token_limit=100,
return_messages=True
)
Conversation Chain with Memory
from langchain.chains import ConversationChain
conversation = ConversationChain(
llm=llm,
memory=ConversationBufferMemory()
)
conversation.predict(input="Hi, I'm Alice")
conversation.predict(input="What's my name?") # "Alice"
# Custom prompt with memory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
MessagesPlaceholder(variable_name="history"),
("human", "{input}")
])
chain = prompt | llm | StrOutputParser()
# Manual memory management
from langchain_core.messages import HumanMessage, AIMessage
history = []
def chat(user_input):
response = chain.invoke({"input": user_input, "history": history})
history.append(HumanMessage(content=user_input))
history.append(AIMessage(content=response))
return response
Advanced Chain Patterns
Sequential Chains
from langchain.chains import SequentialChain, LLMChain
# Step 1: Generate synopsis
synopsis_chain = LLMChain(
llm=llm,
prompt=ChatPromptTemplate.from_template("Write synopsis for: {title}"),
output_key="synopsis"
)
# Step 2: Generate review
review_chain = LLMChain(
llm=llm,
prompt=ChatPromptTemplate.from_template("Review this synopsis: {synopsis}"),
output_key="review"
)
# Combine
overall_chain = SequentialChain(
chains=[synopsis_chain, review_chain],
input_variables=["title"],
output_variables=["synopsis", "review"],
verbose=True
)
result = overall_chain({"title": "AI Revolution"})
Router Chains
from langchain.chains.router import MultiPromptChain
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
# Define specialized prompts
physics_template = """You are a physics expert. Answer: {input}"""
math_template = """You are a math expert. Answer: {input}"""
prompt_infos = [
{
"name": "physics",
"description": "Good for physics questions",
"prompt_template": physics_template
},
{
"name": "math",
"description": "Good for math questions",
"prompt_template": math_template
}
]
# Create router
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations="\n".join(
[f"{p['name']}: {p['description']}" for p in prompt_infos]
))
router_prompt = ChatPromptTemplate.from_template(router_template)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
# Build multi-prompt chain
chain = MultiPromptChain(
router_chain=router_chain,
destination_chains={
"physics": LLMChain(llm=llm, prompt=ChatPromptTemplate.from_template(physics_template)),
"math": LLMChain(llm=llm, prompt=ChatPromptTemplate.from_template(math_template))
},
default_chain=LLMChain(llm=llm, prompt=ChatPromptTemplate.from_template("{input}")),
verbose=True
)
Parallel Execution
from langchain_core.runnables import RunnableParallel
# Execute multiple chains in parallel
parallel_chain = RunnableParallel(
summary=summary_chain,
translation=translation_chain,
sentiment=sentiment_chain
)
result = parallel_chain.invoke({"text": "Long article text..."})
# Returns: {"summary": "...", "translation": "...", "sentiment": "..."}
Async Patterns
Async Chains
import asyncio
# Async invoke
async def process():
result = await chain.ainvoke({"input": "Hello"})
return result
# Async streaming
async def stream():
async for chunk in chain.astream({"input": "Tell me a story"}):
print(chunk, end="", flush=True)
# Async batch
async def batch():
results = await chain.abatch([
{"input": "Question 1"},
{"input": "Question 2"}
])
return results
# Run
asyncio.run(process())
Concurrent Processing
from langchain_core.runnables import RunnablePassthrough
async def process_documents(docs):
# Process multiple documents concurrently
tasks = [chain.ainvoke({"doc": doc}) for doc in docs]
results = await asyncio.gather(*tasks)
return results
# With rate limiting
from langchain.callbacks import get_openai_callback
async def process_with_limits(docs, max_concurrent=5):
semaphore = asyncio.Semaphore(max_concurrent)
async def process_one(doc):
async with semaphore:
return await chain.ainvoke({"doc": doc})
tasks = [process_one(doc) for doc in docs]
return await asyncio.gather(*tasks)
LangSmith Tracing
Setup and Configuration
import os
# Enable LangSmith
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "your-langsmith-key"
os.environ["LANGCHAIN_PROJECT"] = "my-project"
# Trace automatically captures all LangChain operations
result = chain.invoke({"input": "Hello"})
# View trace at: https://smith.langchain.com
Custom Tracing
from langsmith import trace
@trace
def my_function(input_text):
# Custom function tracing
result = chain.invoke({"input": input_text})
return result
# Add metadata
from langchain.callbacks import LangChainTracer
tracer = LangChainTracer(
project_name="my-project",
metadata={"environment": "production", "version": "1.0"}
)
chain.invoke({"input": "Hello"}, config={"callbacks": [tracer]})
Evaluation
from langsmith import Client
from langchain.evaluation import load_evaluator
client = Client()
# Create dataset
dataset = client.create_dataset("my-dataset")
client.create_examples(
inputs=[{"input": "What is AI?"}],
outputs=[{"output": "Artificial Intelligence..."}],
dataset_id=dataset.id
)
# Evaluate
def predict(input_dict):
return chain.invoke(input_dict)
# Run evaluation
results = client.run_on_dataset(
dataset_name="my-dataset",
llm_or_chain_factory=lambda: chain,
evaluation=load_evaluator("qa"),
project_name="my-evaluation"
)
Production Deployment
Error Handling
from langchain_core.runnables import RunnableWithFallbacks
# Fallback chain
primary_llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
fallback_llm = ChatOpenAI(model="gpt-4-turbo-preview")
chain = (prompt | primary_llm).with_fallbacks([prompt | fallback_llm])
# Retry logic
from langchain_core.runnables import RunnableRetry
chain_with_retry = chain.with_retry(
retry_if_exception_type=(RateLimitError,),
wait_exponential_jitter=True,
stop_after_attempt=3
)
# Error handling
try:
result = chain.invoke({"input": "Hello"})
except Exception as e:
logger.error(f"Chain failed: {e}")
# Handle gracefully
Caching
from langchain.cache import InMemoryCache, SQLiteCache
from langchain.globals import set_llm_cache
# In-memory cache
set_llm_cache(InMemoryCache())
# Persistent cache
set_llm_cache(SQLiteCache(database_path=".langchain.db"))
# Redis cache
from langchain.cache import RedisCache
import redis
set_llm_cache(RedisCache(redis_=redis.Redis()))
# Semantic cache
from langchain.cache import RedisSemanticCache
from langchain_openai import OpenAIEmbeddings
set_llm_cache(RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=OpenAIEmbeddings(),
score_threshold=0.8
))
Rate Limiting
from langchain.llms.base import BaseLLM
from ratelimit import limits, sleep_and_retry
class RateLimitedLLM(BaseLLM):
@sleep_and_retry
@limits(calls=50, period=60) # 50 calls per minute
def _call(self, prompt, stop=None, **kwargs):
return self.llm._call(prompt, stop, **kwargs)
# Token budget tracking
from langchain.callbacks import get_openai_callback
with get_openai_callback() as cb:
result = chain.invoke({"input": "Hello"})
print(f"Tokens used: {cb.total_tokens}")
print(f"Cost: ${cb.total_cost}")
Monitoring
from langchain.callbacks.base import BaseCallbackHandler
class MetricsCallback(BaseCallbackHandler):
def on_llm_start(self, serialized, prompts, **kwargs):
# Log LLM start
logger.info(f"LLM started: {prompts}")
def on_llm_end(self, response, **kwargs):
# Log LLM completion
logger.info(f"LLM completed: {response}")
def on_llm_error(self, error, **kwargs):
# Log errors
logger.error(f"LLM error: {error}")
# Use callback
chain.invoke({"input": "Hello"}, config={"callbacks": [MetricsCallback()]})
Best Practices
Code Organization
# chains.py
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
def create_summarization_chain():
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
prompt = ChatPromptTemplate.from_template("Summarize: {text}")
return prompt | llm
# main.py
from chains import create_summarization_chain
chain = create_summarization_chain()
Environment Configuration
# config.py
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
anthropic_api_key: str
langsmith_api_key: str | None = None
langsmith_project: str = "default"
model_name: str = "claude-3-5-sonnet-20241022"
temperature: float = 0.7
class Config:
env_file = ".env"
settings = Settings()
# Use in chains
llm = ChatAnthropic(
model=settings.model_name,
temperature=settings.temperature,
anthropic_api_key=settings.anthropic_api_key
)
Testing
import pytest
from langchain_core.prompts import ChatPromptTemplate
def test_chain_output():
# Use mock LLM for testing
from langchain.llms.fake import FakeListLLM
llm = FakeListLLM(responses=["Mocked response"])
prompt = ChatPromptTemplate.from_template("Test: {input}")
chain = prompt | llm
result = chain.invoke({"input": "test"})
assert result == "Mocked response"
# Integration test
@pytest.mark.integration
def test_real_chain():
chain = create_summarization_chain()
result = chain.invoke({"text": "Long text..."})
assert len(result) > 0
Common Pitfalls
Memory Leaks
# ❌ WRONG: Memory grows unbounded
memory = ConversationBufferMemory()
while True:
chain.invoke({"input": user_input}) # History never cleared
# ✅ CORRECT: Use windowed memory
memory = ConversationBufferWindowMemory(k=10)
# Or clear periodically
if len(memory.chat_memory.messages) > 100:
memory.clear()
Inefficient Retrieval
# ❌ WRONG: Retrieving too many documents
retriever = vectorstore.as_retriever(search_kwargs={"k": 100})
# ✅ CORRECT: Optimize k value
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
# ✅ BETTER: Use MMR for diversity
retriever = vectorstore.as_retriever(
search_type="mmr",
search_kwargs={"k": 4, "fetch_k": 20}
)
Blocking Async
# ❌ WRONG: Blocking in async context
async def process():
result = chain.invoke({"input": "test"}) # Blocks event loop
# ✅ CORRECT: Use async methods
async def process():
result = await chain.ainvoke({"input": "test"})
Unstructured Outputs
# ❌ WRONG: Parsing string outputs
result = chain.invoke({"input": "Extract name and age"})
# Then: parse result string manually
# ✅ CORRECT: Use structured output
from langchain.output_parsers import PydanticOutputParser
parser = PydanticOutputParser(pydantic_object=Person)
chain = prompt | llm | parser
result = chain.invoke({"input": "Extract name and age"})
# Returns: Person(name="John", age=30)
Token Waste
# ❌ WRONG: Sending full context every time
for question in questions:
chain.invoke({"context": long_document, "question": question})
# ✅ CORRECT: Use RAG retrieval
for question in questions:
relevant_docs = retriever.get_relevant_documents(question)
chain.invoke({"context": relevant_docs, "question": question})
Quick Reference
Installation:
pip install langchain langchain-anthropic langchain-openai
pip install chromadb faiss-cpu # Vector stores
pip install langsmith # Observability
Essential Imports:
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
Basic Chain: prompt | llm | parser
RAG Chain: retriever | format_docs | prompt | llm
With Memory: Use MessagesPlaceholder in prompt + memory object
Async: Replace invoke with ainvoke, stream with astream
Debugging: Set verbose=True or enable LangSmith tracing
Production: Add error handling, caching, rate limiting, monitoring
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
3ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
