Back to list
armanzeroeight

etl-designer

by armanzeroeight

🚀 A collection of Claude subagents, skills, rules, guides, and blueprints for Developers, Engineers, and Creators. | Covering programming languages, DevOps, Cloud, and beyond.

20🍴 4📅 Jan 18, 2026

SKILL.md


name: etl-designer description: Design ETL/ELT pipelines with proper orchestration, error handling, and monitoring. Use when building data pipelines, designing data workflows, or implementing data transformations.

ETL Designer

Design robust ETL/ELT pipelines for data processing.

Quick Start

Use Airflow for orchestration, implement idempotent operations, add error handling, monitor pipeline health.

Instructions

Airflow DAG Structure

from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta

default_args = {
    'owner': 'data-team',
    'retries': 3,
    'retry_delay': timedelta(minutes=5),
    'email_on_failure': True,
    'email': ['alerts@company.com']
}

with DAG(
    'etl_pipeline',
    default_args=default_args,
    schedule_interval='0 2 * * *',  # Daily at 2 AM
    start_date=datetime(2024, 1, 1),
    catchup=False
) as dag:
    
    extract = PythonOperator(
        task_id='extract_data',
        python_callable=extract_from_source
    )
    
    transform = PythonOperator(
        task_id='transform_data',
        python_callable=transform_data
    )
    
    load = PythonOperator(
        task_id='load_to_warehouse',
        python_callable=load_to_warehouse
    )
    
    extract >> transform >> load

Incremental Processing

def extract_incremental(last_run_date):
    query = f"""
        SELECT * FROM source_table
        WHERE updated_at > '{last_run_date}'
    """
    return pd.read_sql(query, conn)

Error Handling

def safe_transform(data):
    try:
        transformed = transform_data(data)
        return transformed
    except Exception as e:
        logger.error(f"Transform failed: {e}")
        send_alert(f"Pipeline failed: {e}")
        raise

Best Practices

  • Make operations idempotent
  • Use incremental processing
  • Implement proper error handling
  • Add monitoring and alerts
  • Use data quality checks
  • Document pipeline logic

Score

Total Score

70/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon