Back to list
armanzeroeight

data-quality-checker

by armanzeroeight

🚀 A collection of Claude subagents, skills, rules, guides, and blueprints for Developers, Engineers, and Creators. | Covering programming languages, DevOps, Cloud, and beyond.

20🍴 4📅 Jan 18, 2026

SKILL.md


name: data-quality-checker description: Implement data quality checks, validation rules, and monitoring. Use when ensuring data quality, validating data pipelines, or implementing data governance.

Data Quality Checker

Implement comprehensive data quality checks and validation.

Quick Start

Use Great Expectations for validation, implement schema checks, monitor data quality metrics, set up alerts.

Instructions

Great Expectations Setup

import great_expectations as gx

context = gx.get_context()

# Create expectation suite
suite = context.add_expectation_suite("data_quality_suite")

# Add expectations
validator = context.get_validator(
    batch_request=batch_request,
    expectation_suite_name="data_quality_suite"
)

# Schema validation
validator.expect_table_columns_to_match_ordered_list(
    column_list=["id", "name", "email", "created_at"]
)

# Null checks
validator.expect_column_values_to_not_be_null("email")

# Value ranges
validator.expect_column_values_to_be_between("age", min_value=0, max_value=120)

# Uniqueness
validator.expect_column_values_to_be_unique("email")

# Run validation
results = validator.validate()

Custom Validation Rules

def validate_data_quality(df):
    issues = []
    
    # Check for nulls
    null_counts = df.isnull().sum()
    if null_counts.any():
        issues.append(f"Null values found: {null_counts[null_counts > 0]}")
    
    # Check for duplicates
    duplicates = df.duplicated().sum()
    if duplicates > 0:
        issues.append(f"Found {duplicates} duplicate rows")
    
    # Check data freshness
    max_date = df['created_at'].max()
    if (datetime.now() - max_date).days > 1:
        issues.append("Data is stale")
    
    return issues

Data Quality Metrics

def calculate_quality_metrics(df):
    return {
        'completeness': 1 - (df.isnull().sum().sum() / df.size),
        'uniqueness': df.drop_duplicates().shape[0] / df.shape[0],
        'validity': (df['email'].str.contains('@').sum() / len(df)),
        'timeliness': (datetime.now() - df['created_at'].max()).days
    }

Best Practices

  • Validate at ingestion
  • Monitor quality metrics
  • Set up alerts for failures
  • Document quality rules
  • Regular quality audits
  • Track quality trends

Score

Total Score

70/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon