Back to list
aiskillstore

reasoningbank-adaptive-learning-with-agentdb

by aiskillstore

Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.

102🍴 3📅 Jan 23, 2026

SKILL.md


skill_id: when-implementing-adaptive-learning-use-reasoningbank-agentdb name: reasoningbank-adaptive-learning-with-agentdb description: Implement ReasoningBank adaptive learning with AgentDB for trajectory tracking, verdict judgment, memory distillation, and pattern recognition to build self-learning agents that improve decision-making through experience. version: 1.0.0 category: agentdb subcategory: adaptive-learning trigger_pattern: "when-implementing-adaptive-learning" agents:

  • ml-developer
  • safla-neural
  • performance-analyzer complexity: advanced estimated_duration: 8-10 hours prerequisites:
  • AgentDB advanced features
  • Reinforcement learning concepts
  • Neural network understanding outputs:
  • ReasoningBank system
  • Trajectory tracking
  • Verdict judgment system
  • Memory distillation pipeline
  • Pattern recognition validation_criteria:
  • Trajectories tracked accurately
  • Verdicts judged correctly
  • Patterns learned and applied
  • Decision quality improves over time evidence_based_techniques:
  • Trajectory analysis
  • Verdict evaluation
  • Pattern mining
  • Self-improvement loops metadata: author: claude-flow created: 2025-10-30 tags:
    • agentdb
    • reasoningbank
    • adaptive-learning
    • meta-learning
    • pattern-recognition

ReasoningBank Adaptive Learning with AgentDB

Overview

Implement ReasoningBank adaptive learning with AgentDB's 150x faster vector database for trajectory tracking, verdict judgment, memory distillation, and pattern recognition. Build self-learning agents that improve decision-making through experience.

SOP Framework: 5-Phase Adaptive Learning

Phase 1: Initialize ReasoningBank (1-2 hours)

  • Setup AgentDB with ReasoningBank
  • Configure trajectory tracking
  • Initialize verdict system

Phase 2: Track Trajectories (2-3 hours)

  • Record agent decisions
  • Store reasoning paths
  • Capture context and outcomes

Phase 3: Judge Verdicts (2-3 hours)

  • Evaluate decision quality
  • Score reasoning paths
  • Identify successful patterns

Phase 4: Distill Memory (2-3 hours)

  • Extract learned patterns
  • Consolidate successful strategies
  • Prune ineffective approaches

Phase 5: Apply Learning (1-2 hours)

  • Use learned patterns in decisions
  • Improve future reasoning
  • Measure improvement

Quick Start

import { AgentDB, ReasoningBank } from 'reasoningbank-agentdb';

// Initialize
const db = new AgentDB({
  name: 'reasoning-db',
  dimensions: 768,
  features: { reasoningBank: true }
});

const reasoningBank = new ReasoningBank({
  database: db,
  trajectoryWindow: 1000,
  verdictThreshold: 0.7
});

// Track trajectory
await reasoningBank.trackTrajectory({
  agent: 'agent-1',
  decision: 'action-A',
  reasoning: 'Because X and Y',
  context: { state: currentState },
  timestamp: Date.now()
});

// Judge verdict
const verdict = await reasoningBank.judgeVerdict({
  trajectory: trajectoryId,
  outcome: { success: true, reward: 10 },
  criteria: ['efficiency', 'correctness']
});

// Learn patterns
const patterns = await reasoningBank.distillPatterns({
  minSupport: 0.1,
  confidence: 0.8
});

// Apply learning
const decision = await reasoningBank.makeDecision({
  context: currentContext,
  useLearned: true
});

ReasoningBank Components

Trajectory Tracking

const trajectory = {
  agent: 'agent-1',
  steps: [
    { state: s0, action: a0, reasoning: r0 },
    { state: s1, action: a1, reasoning: r1 }
  ],
  outcome: { success: true, reward: 10 }
};

await reasoningBank.storeTrajectory(trajectory);

Verdict Judgment

const verdict = await reasoningBank.judge({
  trajectory: trajectory,
  criteria: {
    efficiency: 0.8,
    correctness: 0.9,
    novelty: 0.6
  }
});

Memory Distillation

const distilled = await reasoningBank.distill({
  trajectories: recentTrajectories,
  method: 'pattern-mining',
  compression: 0.1 // Keep top 10%
});

Pattern Application

const enhanced = await reasoningBank.enhance({
  query: newProblem,
  patterns: learnedPatterns,
  strategy: 'case-based'
});

Success Metrics

  • Trajectory tracking accuracy > 95%
  • Verdict judgment accuracy > 90%
  • Pattern learning efficiency
  • Decision quality improvement over time
  • 150x faster than traditional approaches

Additional Resources

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon