
reasoningbank-adaptive-learning-with-agentdb
by aiskillstore
Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.
SKILL.md
skill_id: when-implementing-adaptive-learning-use-reasoningbank-agentdb name: reasoningbank-adaptive-learning-with-agentdb description: Implement ReasoningBank adaptive learning with AgentDB for trajectory tracking, verdict judgment, memory distillation, and pattern recognition to build self-learning agents that improve decision-making through experience. version: 1.0.0 category: agentdb subcategory: adaptive-learning trigger_pattern: "when-implementing-adaptive-learning" agents:
- ml-developer
- safla-neural
- performance-analyzer complexity: advanced estimated_duration: 8-10 hours prerequisites:
- AgentDB advanced features
- Reinforcement learning concepts
- Neural network understanding outputs:
- ReasoningBank system
- Trajectory tracking
- Verdict judgment system
- Memory distillation pipeline
- Pattern recognition validation_criteria:
- Trajectories tracked accurately
- Verdicts judged correctly
- Patterns learned and applied
- Decision quality improves over time evidence_based_techniques:
- Trajectory analysis
- Verdict evaluation
- Pattern mining
- Self-improvement loops
metadata:
author: claude-flow
created: 2025-10-30
tags:
- agentdb
- reasoningbank
- adaptive-learning
- meta-learning
- pattern-recognition
ReasoningBank Adaptive Learning with AgentDB
Overview
Implement ReasoningBank adaptive learning with AgentDB's 150x faster vector database for trajectory tracking, verdict judgment, memory distillation, and pattern recognition. Build self-learning agents that improve decision-making through experience.
SOP Framework: 5-Phase Adaptive Learning
Phase 1: Initialize ReasoningBank (1-2 hours)
- Setup AgentDB with ReasoningBank
- Configure trajectory tracking
- Initialize verdict system
Phase 2: Track Trajectories (2-3 hours)
- Record agent decisions
- Store reasoning paths
- Capture context and outcomes
Phase 3: Judge Verdicts (2-3 hours)
- Evaluate decision quality
- Score reasoning paths
- Identify successful patterns
Phase 4: Distill Memory (2-3 hours)
- Extract learned patterns
- Consolidate successful strategies
- Prune ineffective approaches
Phase 5: Apply Learning (1-2 hours)
- Use learned patterns in decisions
- Improve future reasoning
- Measure improvement
Quick Start
import { AgentDB, ReasoningBank } from 'reasoningbank-agentdb';
// Initialize
const db = new AgentDB({
name: 'reasoning-db',
dimensions: 768,
features: { reasoningBank: true }
});
const reasoningBank = new ReasoningBank({
database: db,
trajectoryWindow: 1000,
verdictThreshold: 0.7
});
// Track trajectory
await reasoningBank.trackTrajectory({
agent: 'agent-1',
decision: 'action-A',
reasoning: 'Because X and Y',
context: { state: currentState },
timestamp: Date.now()
});
// Judge verdict
const verdict = await reasoningBank.judgeVerdict({
trajectory: trajectoryId,
outcome: { success: true, reward: 10 },
criteria: ['efficiency', 'correctness']
});
// Learn patterns
const patterns = await reasoningBank.distillPatterns({
minSupport: 0.1,
confidence: 0.8
});
// Apply learning
const decision = await reasoningBank.makeDecision({
context: currentContext,
useLearned: true
});
ReasoningBank Components
Trajectory Tracking
const trajectory = {
agent: 'agent-1',
steps: [
{ state: s0, action: a0, reasoning: r0 },
{ state: s1, action: a1, reasoning: r1 }
],
outcome: { success: true, reward: 10 }
};
await reasoningBank.storeTrajectory(trajectory);
Verdict Judgment
const verdict = await reasoningBank.judge({
trajectory: trajectory,
criteria: {
efficiency: 0.8,
correctness: 0.9,
novelty: 0.6
}
});
Memory Distillation
const distilled = await reasoningBank.distill({
trajectories: recentTrajectories,
method: 'pattern-mining',
compression: 0.1 // Keep top 10%
});
Pattern Application
const enhanced = await reasoningBank.enhance({
query: newProblem,
patterns: learnedPatterns,
strategy: 'case-based'
});
Success Metrics
- Trajectory tracking accuracy > 95%
- Verdict judgment accuracy > 90%
- Pattern learning efficiency
- Decision quality improvement over time
- 150x faster than traditional approaches
Additional Resources
- Full docs: SKILL.md
- ReasoningBank Guide: https://reasoningbank.dev
- AgentDB Integration: https://agentdb.dev/docs/reasoningbank
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
