
r-development
by aiskillstore
Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.
SKILL.md
name: r-development description: Modern R development practices emphasizing tidyverse patterns (dplyr 1.1 and later, native pipe, join_by, .by grouping), rlang metaprogramming, performance optimization, and package development. Use when Claude needs to write R code, create R packages, optimize R performance, or provide R programming guidance.
R Development
This skill provides comprehensive guidance for modern R development, emphasizing current best practices with tidyverse, performance optimization, and professional package development.
Core Principles
- Use modern tidyverse patterns - Prioritize dplyr 1.1+ features, native pipe, and current APIs
- Profile before optimizing - Use profvis and bench to identify real bottlenecks
- Write readable code first - Optimize only when necessary and after profiling
- Follow tidyverse style guide - Consistent naming, spacing, and structure
Modern Tidyverse Essentials
Native Pipe (|> not %>%)
Always use native pipe |> instead of magrittr %>% (R 4.1+):
# Modern
data |>
filter(year >= 2020) |>
summarise(mean_value = mean(value))
# Avoid legacy pipe
data %>% filter(year >= 2020)
Join Syntax (dplyr 1.1+)
Use join_by() for all joins:
# Modern join syntax with equality
transactions |>
inner_join(companies, by = join_by(company == id))
# Inequality joins
transactions |>
inner_join(companies, join_by(company == id, year >= since))
# Rolling joins (closest match)
transactions |>
inner_join(companies, join_by(company == id, closest(year >= since)))
Control match behavior:
# Expect 1:1 matches
inner_join(x, y, by = join_by(id), multiple = "error")
# Ensure all rows match
inner_join(x, y, by = join_by(id), unmatched = "error")
Per-Operation Grouping with .by
Use .by instead of group_by() |> ... |> ungroup():
# Modern approach (always returns ungrouped)
data |>
summarise(mean_value = mean(value), .by = category)
# Multiple grouping variables
data |>
summarise(total = sum(revenue), .by = c(company, year))
Column Operations
Use modern column selection and transformation functions:
# pick() for column selection in data-masking contexts
data |>
summarise(
n_x_cols = ncol(pick(starts_with("x"))),
n_y_cols = ncol(pick(starts_with("y")))
)
# across() for applying functions to multiple columns
data |>
summarise(across(where(is.numeric), mean, .names = "mean_{.col}"), .by = group)
# reframe() for multi-row results per group
data |>
reframe(quantiles = quantile(x, c(0.25, 0.5, 0.75)), .by = group)
rlang Metaprogramming
For comprehensive rlang patterns, see references/rlang-patterns.md.
Quick Reference
{{}}- Forward function arguments to data-masking functions!!- Inject single expressions or values!!!- Inject multiple arguments from a list.data[[]]- Access columns by name (character vectors)pick()- Select columns inside data-masking functions
Example function with embracing:
my_summary <- function(data, group_var, summary_var) {
data |>
summarise(mean_val = mean({{ summary_var }}), .by = {{ group_var }})
}
Performance Optimization
For detailed performance guidance, see references/performance.md.
Key Strategies
- Profile first: Use
profvis::profvis()andbench::mark() - Vectorize operations: Avoid loops when vectorized alternatives exist
- Use dtplyr: For large data operations (lazy evaluation with data.table backend)
- Parallel processing: Use
furrr::future_map()for parallelizable work - Memory efficiency: Pre-allocate, use appropriate data types
Quick example:
# Profile code
profvis::profvis({
result <- data |>
complex_operation() |>
another_operation()
})
# Benchmark alternatives
bench::mark(
approach_1 = method1(data),
approach_2 = method2(data),
check = FALSE
)
Package Development
For complete package development guidance, see references/package-development.md.
Quick Guidelines
API Design:
- Use
.byparameter for per-operation grouping - Use
{{}}for column arguments - Return tibbles consistently
- Validate user-facing function inputs thoroughly
Dependencies:
- Add dependencies for significant functionality gains
- Core tidyverse packages usually worth including: dplyr, purrr, stringr, tidyr
- Minimize dependencies for widely-used packages
Testing:
- Unit tests for individual functions
- Integration tests for workflows
- Test edge cases and error conditions
Documentation:
- Document all exported functions
- Provide usage examples
- Explain non-obvious parameter interactions
Common Migration Patterns
Base R → Tidyverse
# Data manipulation
subset(data, condition) → filter(data, condition)
data[order(data$x), ] → arrange(data, x)
aggregate(x ~ y, data, mean) → summarise(data, mean(x), .by = y)
# Functional programming
sapply(x, f) → map(x, f) # type-stable
lapply(x, f) → map(x, f)
# Strings
grepl("pattern", text) → str_detect(text, "pattern")
gsub("old", "new", text) → str_replace_all(text, "old", "new")
Old → New Tidyverse
# Pipes
%>% → |>
# Grouping
group_by() |> ... |> ungroup() → summarise(..., .by = x)
# Joins
by = c("a" = "b") → by = join_by(a == b)
# Reshaping
gather()/spread() → pivot_longer()/pivot_wider()
Additional Resources
- rlang patterns: See references/rlang-patterns.md for comprehensive data-masking and metaprogramming guidance
- Performance optimization: See references/performance.md for profiling, benchmarking, and optimization strategies
- Package development: See references/package-development.md for complete package creation guidance
- Object systems: See references/object-systems.md for S3, S4, S7, R6, and vctrs guidance
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
