
prompting
by aiskillstore
Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.
SKILL.md
name: prompting description: Prompt engineering standards and context engineering principles for AI agents based on Anthropic best practices. Covers clarity, structure, progressive discovery, and optimization for signal-to-noise ratio.
Prompting Skill
When to Activate This Skill
- Prompt engineering questions
- Context engineering guidance
- AI agent design
- Prompt structure help
- Best practices for LLM prompts
- Agent configuration
Core Philosophy
Context engineering = Curating optimal set of tokens during LLM inference
Primary Goal: Find smallest possible set of high-signal tokens that maximize desired outcomes
Key Principles
1. Context is Finite Resource
- LLMs have limited "attention budget"
- Performance degrades as context grows
- Every token depletes capacity
- Treat context as precious
2. Optimize Signal-to-Noise
- Clear, direct language over verbose explanations
- Remove redundant information
- Focus on high-value tokens
3. Progressive Discovery
- Use lightweight identifiers vs full data dumps
- Load detailed info dynamically when needed
- Just-in-time information loading
Markdown Structure Standards
Use clear semantic sections:
- Background Information: Minimal essential context
- Instructions: Imperative voice, specific, actionable
- Examples: Show don't tell, concise, representative
- Constraints: Boundaries, limitations, success criteria
Writing Style
Clarity Over Completeness
✅ Good: "Validate input before processing" ❌ Bad: "You should always make sure to validate..."
Be Direct
✅ Good: "Use calculate_tax tool with amount and jurisdiction" ❌ Bad: "You might want to consider using..."
Use Structured Lists
✅ Good: Bulleted constraints ❌ Bad: Paragraph of requirements
Context Management
Just-in-Time Loading
Don't load full data dumps - use references and load when needed
Structured Note-Taking
Persist important info outside context window
Sub-Agent Architecture
Delegate subtasks to specialized agents with minimal context
Best Practices Checklist
- Uses Markdown headers for organization
- Clear, direct, minimal language
- No redundant information
- Actionable instructions
- Concrete examples
- Clear constraints
- Just-in-time loading when appropriate
Anti-Patterns
❌ Verbose explanations ❌ Historical context dumping ❌ Overlapping tool definitions ❌ Premature information loading ❌ Vague instructions ("might", "could", "should")
Supplementary Resources
For full standards: read ${PAI_DIR}/skills/prompting/CLAUDE.md
Based On
Anthropic's "Effective Context Engineering for AI Agents"
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
