Back to list
aiskillstore

performance-optimization

by aiskillstore

Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.

102🍴 3📅 Jan 23, 2026

SKILL.md


name: performance-optimization description: Full-stack performance analysis, optimization patterns, and monitoring strategies version: 1.0.0 category: Quality & Optimization agents: [backend-system-architect, frontend-ui-developer, code-quality-reviewer] keywords: [performance, optimization, speed, latency, throughput, caching, profiling, bundle, Core Web Vitals]

Performance Optimization Skill

Comprehensive frameworks for analyzing and optimizing application performance across the entire stack.

When to Use

  • Application feels slow or unresponsive
  • Database queries taking too long
  • Frontend bundle size too large
  • API response times exceed targets
  • Core Web Vitals need improvement
  • Preparing for scale or high traffic

Performance Targets

Core Web Vitals (Frontend)

MetricGoodNeeds Work
LCP (Largest Contentful Paint)< 2.5s< 4s
INP (Interaction to Next Paint)< 200ms< 500ms
CLS (Cumulative Layout Shift)< 0.1< 0.25
TTFB (Time to First Byte)< 200ms< 600ms

Backend Targets

OperationTarget
Simple reads< 100ms
Complex queries< 500ms
Write operations< 200ms
Index lookups< 10ms

Bottleneck Categories

CategorySymptomsTools
NetworkHigh TTFB, slow loadingNetwork tab, WebPageTest
DatabaseSlow queries, pool exhaustionEXPLAIN ANALYZE, pg_stat_statements
CPUHigh usage, slow computeProfiler, flame graphs
MemoryLeaks, GC pausesHeap snapshots
RenderingLayout thrashingReact DevTools, Performance tab

Database Optimization

Key Patterns

  1. Add Missing Indexes - Turn Seq Scan into Index Scan
  2. Fix N+1 Queries - Use JOINs or include instead of loops
  3. Cursor Pagination - Never load all records
  4. Connection Pooling - Manage connection lifecycle

Quick Diagnostics

-- Find slow queries (PostgreSQL)
SELECT query, calls, mean_time / 1000 as mean_seconds
FROM pg_stat_statements ORDER BY total_time DESC LIMIT 10;

-- Verify index usage
EXPLAIN ANALYZE SELECT * FROM orders WHERE user_id = 123;

See templates/database-optimization.ts for N+1 fixes and pagination patterns

Caching Strategy

Cache Hierarchy

L1: In-Memory (LRU, memoization) - fastest
L2: Distributed (Redis/Memcached) - shared
L3: CDN (edge, static assets) - global
L4: Database (materialized views) - fallback

Cache-Aside Pattern

const cached = await redis.get(key);
if (cached) return JSON.parse(cached);
const data = await db.query(...);
await redis.setex(key, 3600, JSON.stringify(data));
return data;

See templates/caching-patterns.ts for full implementation

Frontend Optimization

Bundle Optimization

  1. Code Splitting - lazy() for route-based splitting
  2. Tree Shaking - Import only what you need
  3. Image Optimization - WebP/AVIF, lazy loading, proper sizing

Rendering Optimization

  1. Memoization - memo(), useCallback(), useMemo()
  2. Virtualization - Render only visible items in long lists
  3. Batch DOM Operations - Read all, then write all

See templates/frontend-optimization.tsx for patterns

Analysis Commands

# Lighthouse audit
lighthouse http://localhost:3000 --output=json

# Bundle analysis
npx @next/bundle-analyzer  # Next.js
npx vite-bundle-visualizer # Vite

API Optimization

Response Optimization

  1. Field Selection - Return only requested fields
  2. Compression - Enable gzip/brotli (threshold: 1KB)
  3. ETags - Enable 304 responses for unchanged data
  4. Pagination - Cursor-based for large datasets

See templates/api-optimization.ts for middleware examples

Monitoring Checklist

Before Launch

  • Lighthouse score > 90
  • Core Web Vitals pass
  • Bundle size within budget
  • Database queries profiled
  • Compression enabled
  • CDN configured

Ongoing

  • Performance monitoring active
  • Alerting for degradation
  • Lighthouse CI in pipeline
  • Weekly query analysis
  • Real User Monitoring (RUM)

See templates/performance-metrics.ts for Prometheus metrics setup

Extended Thinking Triggers

Use Opus 4.5 extended thinking for:

  • Complex debugging - Multiple potential causes
  • Architecture decisions - Caching strategy selection
  • Trade-off analysis - Memory vs CPU vs latency
  • Root cause analysis - Performance regression investigation

Templates Reference

TemplatePurpose
database-optimization.tsN+1 fixes, pagination, pooling
caching-patterns.tsRedis cache-aside, memoization
frontend-optimization.tsxReact memo, virtualization, code splitting
api-optimization.tsCompression, ETags, field selection
performance-metrics.tsPrometheus metrics, performance budget

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon