← Back to list

hft-quant-expert
by aiskillstore
Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.
⭐ 102🍴 3📅 Jan 23, 2026
SKILL.md
name: hft-quant-expert description: Quantitative trading expertise for DeFi and crypto derivatives. Use when building trading strategies, signals, risk management. Triggers on signal, backtest, alpha, sharpe, volatility, correlation, position size, risk.
HFT Quant Expert
Quantitative trading expertise for DeFi and crypto derivatives.
When to Use
- Building trading strategies and signals
- Implementing risk management
- Calculating position sizes
- Backtesting strategies
- Analyzing volatility and correlations
Workflow
Step 1: Define Signal
Calculate z-score or other entry signal.
Step 2: Size Position
Use Kelly Criterion (0.25x) for position sizing.
Step 3: Validate Backtest
Check for lookahead bias, survivorship bias, overfitting.
Step 4: Account for Costs
Include gas + slippage in profit calculations.
Quick Formulas
# Z-score
zscore = (value - rolling_mean) / rolling_std
# Sharpe (annualized)
sharpe = np.sqrt(252) * returns.mean() / returns.std()
# Kelly fraction (use 0.25x)
kelly = (win_prob * win_loss_ratio - (1 - win_prob)) / win_loss_ratio
# Half-life of mean reversion
half_life = -np.log(2) / lambda_coef
Common Pitfalls
- Lookahead bias - Using future data
- Survivorship bias - Only existing assets
- Overfitting - Too many parameters
- Ignoring costs - Gas + slippage
- Wrong annualization - 252 daily, 365*24 hourly
Score
Total Score
60/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
○LICENSE
ライセンスが設定されている
0/10
○説明文
100文字以上の説明がある
0/10
✓人気
GitHub Stars 100以上
+5
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon
