Back to list
aiskillstore

data-substrate-analysis

by aiskillstore

Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.

102🍴 3📅 Jan 23, 2026

SKILL.md


name: data-substrate-analysis description: Analyze fundamental data primitives, type systems, and state management patterns in a codebase. Use when (1) evaluating typing strategies (Pydantic vs TypedDict vs loose dicts), (2) assessing immutability and mutation patterns, (3) understanding serialization approaches, (4) documenting state shape and lifecycle, or (5) comparing data modeling approaches across frameworks.

Data Substrate Analysis

Analyzes the fundamental units of data and state management patterns.

Process

  1. Locate type files — Find types.py, schema.py, models.py, state.py
  2. Classify typing — Strict (Pydantic), structural (TypedDict), loose (dict)
  3. Analyze mutation — In-place modification vs. copy-on-write
  4. Document serialization — json(), dict(), pickle, custom methods

Typing Strategy Classification

Detection Patterns

StrategyIndicatorsFiles to Check
PydanticBaseModel, Field(), validatormodels.py, schema.py
Dataclass@dataclass, field()types.py, models.py
TypedDictTypedDict, Required[], NotRequired[]types.py
NamedTupleNamedTuple, typing.NamedTupletypes.py
LooseDict[str, Any], plain dictThroughout

Analysis Questions

  • Are boundaries validated (API ingress/egress)?
  • Is nesting depth reasonable (<3 levels)?
  • Are optional fields explicit or implicit None?
  • Version migration path (Pydantic V1 → V2)?

Immutability Analysis

Mutable Patterns (Risk Indicators)

# In-place list modification
state.messages.append(msg)
state.history.extend(new_items)

# Direct dict mutation
state['key'] = value
state.update(new_data)

# Object attribute mutation
state.status = 'complete'

Immutable Patterns (Safer)

# Pydantic copy
new_state = state.model_copy(update={'key': value})

# Dataclass replace
new_state = replace(state, messages=[*state.messages, msg])

# Spread operator style
new_state = {**state, 'key': value}

# Frozen dataclass
@dataclass(frozen=True)
class State: ...

Serialization Strategy

Common Patterns

MethodCode PatternTrade-offs
Pydantic JSON.model_dump_json()Type-safe, automatic
Pydantic Dict.model_dump()For internal use
Dataclassasdict(obj)Manual, no validation
Customto_dict(), from_dict()Full control
Picklepickle.dumps()Fast, fragile, security risk
JSONjson.dumps(obj, default=...)Requires encoder

Questions to Answer

  • Is serialization implicit (automatic) or explicit (manual)?
  • How are nested objects handled?
  • Is deserialization validated?
  • What happens with unknown fields?

Output Template

## Data Substrate Analysis: [Framework Name]

### Typing Strategy
- **Primary Approach**: [Pydantic/Dataclass/TypedDict/Loose]
- **Key Files**: [List of files]
- **Nesting Depth**: [Shallow/Medium/Deep]
- **Validation**: [At boundaries/Everywhere/None]

### Core Primitives

| Type | Location | Purpose | Mutability |
|------|----------|---------|------------|
| Message | schema.py:L15 | Chat message | Immutable |
| State | state.py:L42 | Agent state | Mutable ⚠️ |
| Result | types.py:L78 | Tool output | Immutable |

### Mutation Analysis
- **Pattern**: [In-place/Copy-on-write/Mixed]
- **Risk Areas**: [List of mutable state locations]
- **Concurrency Safe**: [Yes/No/Partial]

### Serialization
- **Method**: [Pydantic/Custom/JSON]
- **Implicit/Explicit**: [Description]
- **Round-trip Tested**: [Yes/No/Unknown]

Integration

  • Prerequisite: codebase-mapping to identify type files
  • Feeds into: comparative-matrix for typing decisions
  • Related: resilience-analysis for error handling in serialization

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon