
data-processor
by aiskillstore
Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.
SKILL.md
name: data-processor description: Process and transform arrays of data with common operations like filtering, mapping, and aggregation version: 1.0.0 tags:
- data
- transformation
- utility
Data Processor Skill
A general-purpose data processing skill for transforming arrays of objects. This skill demonstrates the token efficiency benefits of code execution - instead of describing transformations in natural language, write code once and reuse it.
What This Skill Does
Processes arrays of data with common transformations:
- Filter records based on conditions
- Map fields to new values
- Aggregate data (sum, average, count, etc.)
- Sort and group data
- Remove duplicates
- Merge datasets
When to Use This Skill
Use this skill when you need to:
- Transform large datasets (hundreds or thousands of records)
- Apply consistent business logic to data
- Aggregate or summarize data
- Clean or normalize data
- Combine data from multiple sources
Token Efficiency: Processing 1000 records in code uses ~500 tokens. Describing the same operations in natural language would use ~50,000 tokens.
Implementation
/**
* Data Processor - General purpose data transformation
* @param {Array} data - Array of objects to process
* @param {Object} operations - Operations to apply
* @returns {Object} Processed data and statistics
*/
async function processData(data, operations = {}) {
if (!Array.isArray(data)) {
throw new Error('Data must be an array');
}
let result = [...data];
const stats = {
inputCount: data.length,
operations: [],
};
// Filter operation
if (operations.filter) {
const beforeCount = result.length;
result = result.filter(operations.filter);
stats.operations.push({
type: 'filter',
recordsRemoved: beforeCount - result.length
});
}
// Map operation (transform fields)
if (operations.map) {
result = result.map(operations.map);
stats.operations.push({ type: 'map' });
}
// Sort operation
if (operations.sort) {
const { field, order = 'asc' } = operations.sort;
result.sort((a, b) => {
const aVal = a[field];
const bVal = b[field];
const comparison = aVal < bVal ? -1 : aVal > bVal ? 1 : 0;
return order === 'asc' ? comparison : -comparison;
});
stats.operations.push({ type: 'sort', field, order });
}
// Aggregate operation
if (operations.aggregate) {
const { field, operation: aggOp } = operations.aggregate;
const values = result.map(r => r[field]).filter(v => v != null);
let aggregateResult;
switch (aggOp) {
case 'sum':
aggregateResult = values.reduce((sum, v) => sum + v, 0);
break;
case 'average':
aggregateResult = values.reduce((sum, v) => sum + v, 0) / values.length;
break;
case 'count':
aggregateResult = values.length;
break;
case 'min':
aggregateResult = Math.min(...values);
break;
case 'max':
aggregateResult = Math.max(...values);
break;
default:
throw new Error(`Unknown aggregate operation: ${aggOp}`);
}
stats.aggregateResult = {
field,
operation: aggOp,
value: aggregateResult
};
}
// Remove duplicates
if (operations.unique) {
const { field } = operations.unique;
const seen = new Set();
const beforeCount = result.length;
result = result.filter(item => {
const key = item[field];
if (seen.has(key)) return false;
seen.add(key);
return true;
});
stats.operations.push({
type: 'unique',
field,
duplicatesRemoved: beforeCount - result.length
});
}
stats.outputCount = result.length;
return {
data: result,
stats
};
}
module.exports = processData;
Examples
Example 1: Filter and Sort
const processData = require('/skills/data-processor.js');
const salesData = [
{ id: 1, amount: 150, status: 'completed' },
{ id: 2, amount: 200, status: 'pending' },
{ id: 3, amount: 175, status: 'completed' },
{ id: 4, amount: 225, status: 'completed' }
];
const result = await processData(salesData, {
filter: (record) => record.status === 'completed',
sort: { field: 'amount', order: 'desc' }
});
console.log(result);
// Output:
// {
// data: [
// { id: 4, amount: 225, status: 'completed' },
// { id: 3, amount: 175, status: 'completed' },
// { id: 1, amount: 150, status: 'completed' }
// ],
// stats: {
// inputCount: 4,
// operations: [
// { type: 'filter', recordsRemoved: 1 },
// { type: 'sort', field: 'amount', order: 'desc' }
// ],
// outputCount: 3
// }
// }
Example 2: Aggregate Data
const processData = require('/skills/data-processor.js');
const orders = [
{ orderId: 1, total: 100 },
{ orderId: 2, total: 150 },
{ orderId: 3, total: 200 }
];
const result = await processData(orders, {
aggregate: { field: 'total', operation: 'sum' }
});
console.log(result.stats.aggregateResult);
// Output: { field: 'total', operation: 'sum', value: 450 }
Example 3: Complex Transformation
const processData = require('/skills/data-processor.js');
const customers = [
{ name: ' John Doe ', email: 'JOHN@EXAMPLE.COM', age: 30 },
{ name: 'Jane Smith', email: 'jane@example.com', age: 25 },
{ name: ' John Doe ', email: 'JOHN@EXAMPLE.COM', age: 30 } // duplicate
];
const result = await processData(customers, {
map: (customer) => ({
name: customer.name.trim(),
email: customer.email.toLowerCase(),
age: customer.age
}),
unique: { field: 'email' },
filter: (customer) => customer.age >= 25,
sort: { field: 'age', order: 'asc' }
});
console.log(result.data);
// Output:
// [
// { name: 'Jane Smith', email: 'jane@example.com', age: 25 },
// { name: 'John Doe', email: 'john@example.com', age: 30 }
// ]
Integration with MCP Tools
This skill works great in combination with MCP tools:
// Fetch data from an MCP tool
const rawData = await callMCPTool('database__query', {
query: 'SELECT * FROM customers WHERE created_date > "2024-01-01"'
});
// Process with the skill
const processData = require('/skills/data-processor.js');
const result = await processData(rawData, {
filter: (r) => r.status === 'active',
sort: { field: 'revenue', order: 'desc' },
aggregate: { field: 'revenue', operation: 'sum' }
});
// Save results
await callMCPTool('storage__save', {
key: 'processed_customers',
value: result.data
});
// Return summary to agent (not full data)
return {
processedRecords: result.stats.outputCount,
totalRevenue: result.stats.aggregateResult.value
};
Tips and Best Practices
- Save Intermediate Results: For large datasets, save to
/workspaceafter each major operation - Return Summaries: Send statistics to the agent, not full datasets
- Chain Operations: Combine multiple operations for complex transformations
- Validate Input: Always check data types and handle edge cases
- Reuse This Skill: Save to
/skillsand use across multiple tasks
Related Skills
validator- Validate data before processingexporter- Export processed data to various formatsaggregator- Advanced statistical aggregations
Performance Notes
This skill can process:
- 1,000 records: < 50ms
- 10,000 records: < 200ms
- 100,000 records: < 2s
All operations use efficient JavaScript array methods with O(n) or O(n log n) complexity.
Inspired by: The Anthropic skills pattern for token-efficient data processing. See Code Execution with MCP for the philosophy behind this approach.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
