Back to list
aiskillstore

building-agent-tools

by aiskillstore

Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.

102🍴 3📅 Jan 23, 2026

SKILL.md


name: building-agent-tools description: Guide for creating effective tools for AI agents. Use when building MCP tools, agent APIs, or any tool interface that agents will consume. Focuses on token efficiency, meaningful context, and proper namespacing.

Building Tools for AI Agents

Workflow

  1. Define Purpose

    • Identify what agents need to accomplish with this tool
    • Determine if existing tools can be consolidated
    • Plan the tool's interface for agent consumption
  2. Design Interface

    • Choose descriptive, namespaced tool names
    • Define parameters with clear types and descriptions
    • Design output format for maximum signal, minimum tokens
  3. Implement

    • Build with token efficiency in mind
    • Add pagination, filtering, sensible defaults
    • Return semantic identifiers, not raw IDs
  4. Validate

    • Test with real agent workflows
    • Check token consumption patterns
    • Verify error messages guide agents toward solutions

Design Principles

Tool Consolidation

  • More tools don't lead to better outcomes
  • Combine related operations into single tools
  • Example: schedule_event that checks availability AND creates event
  • Avoid simple CRUD-style tools that require multiple calls

Namespacing

  • Prefix related tools with service name: asana_projects_search, asana_users_search
  • Group by domain to help agents distinguish functionality
  • Use consistent naming patterns across tool families

Meaningful Context

  • Return high-signal information, not raw data dumps
  • Resolve cryptic UUIDs to human-readable identifiers
  • Include response_format parameter (concise/detailed) for flexibility
  • Surface relevant metadata agents need for next steps

Token Efficiency

  • Implement pagination with sensible defaults
  • Add filtering parameters to reduce unnecessary data
  • Truncate large responses intelligently
  • Prefer structured output over verbose prose

Tool Descriptions

  • Invest heavily in clear, explicit descriptions
  • Describe what the tool does, when to use it, and what it returns
  • Include parameter constraints and valid values
  • Small description improvements yield large performance gains

Anti-Patterns

  • Creating many granular tools instead of consolidated operations
  • Returning raw IDs that agents can't interpret
  • Omitting pagination on potentially large result sets
  • Vague tool descriptions that leave agents guessing
  • Error messages that don't help agents recover
  • Requiring agents to make multiple calls for common workflows

MCP-Specific Patterns

Tool Registration

  • Use descriptive name and description in tool schema
  • Define inputSchema with JSON Schema for parameters
  • Mark required vs optional parameters explicitly

Response Format

  • Return structured JSON for predictable parsing
  • Include success/error indicators
  • Provide actionable error messages

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon