Back to list
aiskillstore

agentdb-vector-search-optimization

by aiskillstore

Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.

102🍴 3📅 Jan 23, 2026

SKILL.md


skill_id: when-optimizing-vector-search-use-agentdb-optimization name: agentdb-vector-search-optimization description: Optimize AgentDB vector search performance using quantization for 4-32x memory reduction, HNSW indexing for 150x faster search, caching, and batch operations for scaling to millions of vectors. version: 1.0.0 category: agentdb subcategory: performance-optimization trigger_pattern: "when-optimizing-vector-search" agents:

  • performance-analyzer
  • ml-developer
  • backend-dev complexity: intermediate estimated_duration: 5-7 hours prerequisites:
  • AgentDB basics
  • Vector search concepts
  • Performance profiling skills outputs:
  • Optimized vector database
  • 4-32x memory reduction
  • 150x faster search
  • Performance benchmarks validation_criteria:
  • Memory usage reduced by 4x minimum
  • Search latency < 10ms (p95)
  • Throughput > 50K ops/sec
  • Accuracy maintained > 95% evidence_based_techniques:
  • Quantitative benchmarking
  • A/B comparison testing
  • Performance profiling metadata: author: claude-flow created: 2025-10-30 tags:
    • agentdb
    • optimization
    • quantization
    • hnsw-indexing
    • performance

AgentDB Vector Search Optimization

Overview

Optimize AgentDB performance with quantization (4-32x memory reduction), HNSW indexing (150x faster search), caching, and batch operations for scaling to millions of vectors.

SOP Framework: 5-Phase Optimization

Phase 1: Baseline Performance (1 hour)

  • Measure current metrics (latency, throughput, memory)
  • Identify bottlenecks
  • Set optimization targets

Phase 2: Apply Quantization (1-2 hours)

  • Configure product quantization
  • Train codebooks
  • Apply compression
  • Validate accuracy

Phase 3: Implement HNSW Indexing (1-2 hours)

  • Build HNSW index
  • Tune parameters (M, efConstruction, efSearch)
  • Benchmark speedup

Phase 4: Configure Caching (1 hour)

  • Implement query cache
  • Set TTL and eviction policies
  • Monitor hit rates

Phase 5: Benchmark Results (1-2 hours)

  • Run comprehensive benchmarks
  • Compare before/after
  • Validate improvements

Quick Start

import { AgentDB, Quantization, QueryCache } from 'agentdb-optimization';

const db = new AgentDB({ name: 'optimized-db', dimensions: 1536 });

// Quantization (4x memory reduction)
const quantizer = new Quantization({
  method: 'product-quantization',
  compressionRatio: 4
});
await db.applyQuantization(quantizer);

// HNSW indexing (150x speedup)
await db.createIndex({
  type: 'hnsw',
  params: { M: 16, efConstruction: 200 }
});

// Caching
db.setCache(new QueryCache({
  maxSize: 10000,
  ttl: 3600000
}));

Optimization Techniques

Quantization

  • Product Quantization: 4-8x compression
  • Scalar Quantization: 2-4x compression
  • Binary Quantization: 32x compression

Indexing

  • HNSW: 150x faster, high accuracy
  • IVF: Fast, partitioned search
  • LSH: Approximate search

Caching

  • Query Cache: LRU eviction
  • Result Cache: TTL-based
  • Embedding Cache: Reuse embeddings

Success Metrics

  • Memory reduction: 4-32x
  • Search speedup: 150x
  • Accuracy maintained: > 95%
  • Cache hit rate: > 70%

Additional Resources

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon