
agentdb-semantic-vector-search
by aiskillstore
Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.
SKILL.md
skill_id: when-building-semantic-search-use-agentdb-vector-search name: agentdb-semantic-vector-search description: Build semantic vector search systems with AgentDB for intelligent document retrieval, RAG applications, and knowledge bases using embedding-based similarity matching version: 1.0.0 category: agentdb subcategory: semantic-search trigger_pattern: "when-building-semantic-search" agents:
- ml-developer
- backend-dev
- tester complexity: intermediate estimated_duration: 6-8 hours prerequisites:
- AgentDB basics
- Embedding models knowledge
- REST API development outputs:
- Semantic search engine
- Document retrieval system
- RAG-ready infrastructure
- Query API endpoints validation_criteria:
- Search returns relevant results
- Retrieval accuracy > 90%
- Query latency < 100ms
- API functional and documented evidence_based_techniques:
- Relevance evaluation
- Precision/recall metrics
- User feedback testing
metadata:
author: claude-flow
created: 2025-10-30
tags:
- agentdb
- semantic-search
- rag
- vector-search
- embeddings
AgentDB Semantic Vector Search
Overview
Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Build RAG systems, semantic search engines, and knowledge bases.
SOP Framework: 5-Phase Semantic Search
Phase 1: Setup Vector Database (1-2 hours)
- Initialize AgentDB
- Configure embedding model
- Setup database schema
Phase 2: Embed Documents (1-2 hours)
- Process document corpus
- Generate embeddings
- Store vectors with metadata
Phase 3: Build Search Index (1-2 hours)
- Create HNSW index
- Optimize search parameters
- Test retrieval accuracy
Phase 4: Implement Query Interface (1-2 hours)
- Create REST API endpoints
- Add filtering and ranking
- Implement hybrid search
Phase 5: Refine and Optimize (1-2 hours)
- Improve relevance
- Add re-ranking
- Performance tuning
Quick Start
import { AgentDB, EmbeddingModel } from 'agentdb-vector-search';
// Initialize
const db = new AgentDB({ name: 'semantic-search', dimensions: 1536 });
const embedder = new EmbeddingModel('openai/ada-002');
// Embed documents
for (const doc of documents) {
const embedding = await embedder.embed(doc.text);
await db.insert({
id: doc.id,
vector: embedding,
metadata: { title: doc.title, content: doc.text }
});
}
// Search
const query = 'machine learning tutorials';
const queryEmbedding = await embedder.embed(query);
const results = await db.search({
vector: queryEmbedding,
topK: 10,
filter: { category: 'tech' }
});
Features
- Semantic Search: Meaning-based retrieval
- Hybrid Search: Vector + keyword search
- Filtering: Metadata-based filtering
- Re-ranking: Improve result relevance
- RAG Integration: Context for LLMs
Success Metrics
- Retrieval accuracy > 90%
- Query latency < 100ms
- Relevant results in top-10: > 95%
- API uptime > 99.9%
Additional Resources
- Full docs: SKILL.md
- AgentDB Vector Search: https://agentdb.dev/docs/vector-search
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
