Back to list
aiskillstore

agentdb-semantic-vector-search

by aiskillstore

Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.

102🍴 3📅 Jan 23, 2026

SKILL.md


skill_id: when-building-semantic-search-use-agentdb-vector-search name: agentdb-semantic-vector-search description: Build semantic vector search systems with AgentDB for intelligent document retrieval, RAG applications, and knowledge bases using embedding-based similarity matching version: 1.0.0 category: agentdb subcategory: semantic-search trigger_pattern: "when-building-semantic-search" agents:

  • ml-developer
  • backend-dev
  • tester complexity: intermediate estimated_duration: 6-8 hours prerequisites:
  • AgentDB basics
  • Embedding models knowledge
  • REST API development outputs:
  • Semantic search engine
  • Document retrieval system
  • RAG-ready infrastructure
  • Query API endpoints validation_criteria:
  • Search returns relevant results
  • Retrieval accuracy > 90%
  • Query latency < 100ms
  • API functional and documented evidence_based_techniques:
  • Relevance evaluation
  • Precision/recall metrics
  • User feedback testing metadata: author: claude-flow created: 2025-10-30 tags:
    • agentdb
    • semantic-search
    • rag
    • vector-search
    • embeddings

AgentDB Semantic Vector Search

Overview

Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Build RAG systems, semantic search engines, and knowledge bases.

Phase 1: Setup Vector Database (1-2 hours)

  • Initialize AgentDB
  • Configure embedding model
  • Setup database schema

Phase 2: Embed Documents (1-2 hours)

  • Process document corpus
  • Generate embeddings
  • Store vectors with metadata

Phase 3: Build Search Index (1-2 hours)

  • Create HNSW index
  • Optimize search parameters
  • Test retrieval accuracy

Phase 4: Implement Query Interface (1-2 hours)

  • Create REST API endpoints
  • Add filtering and ranking
  • Implement hybrid search

Phase 5: Refine and Optimize (1-2 hours)

  • Improve relevance
  • Add re-ranking
  • Performance tuning

Quick Start

import { AgentDB, EmbeddingModel } from 'agentdb-vector-search';

// Initialize
const db = new AgentDB({ name: 'semantic-search', dimensions: 1536 });
const embedder = new EmbeddingModel('openai/ada-002');

// Embed documents
for (const doc of documents) {
  const embedding = await embedder.embed(doc.text);
  await db.insert({
    id: doc.id,
    vector: embedding,
    metadata: { title: doc.title, content: doc.text }
  });
}

// Search
const query = 'machine learning tutorials';
const queryEmbedding = await embedder.embed(query);
const results = await db.search({
  vector: queryEmbedding,
  topK: 10,
  filter: { category: 'tech' }
});

Features

  • Semantic Search: Meaning-based retrieval
  • Hybrid Search: Vector + keyword search
  • Filtering: Metadata-based filtering
  • Re-ranking: Improve result relevance
  • RAG Integration: Context for LLMs

Success Metrics

  • Retrieval accuracy > 90%
  • Query latency < 100ms
  • Relevant results in top-10: > 95%
  • API uptime > 99.9%

Additional Resources

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon