
agentdb-persistent-memory-patterns
by aiskillstore
Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.
SKILL.md
skill_id: when-implementing-persistent-memory-use-agentdb-memory name: agentdb-persistent-memory-patterns description: "Implement persistent memory patterns for AI agents using AgentDB - session memory, long-term storage, pattern learning, and context management for stateful agents, chat systems, and intelligent assistants" version: 1.0.0 category: agentdb subcategory: memory-management trigger_pattern: "when-implementing-persistent-memory" agents:
- memory-coordinator
- swarm-memory-manager
- backend-dev complexity: intermediate estimated_duration: 6-8 hours prerequisites:
- AgentDB basics
- Memory management concepts
- Database schema design outputs:
- Persistent memory architecture
- Session and long-term storage
- Pattern learning system
- Context management APIs validation_criteria:
- Memory persists across sessions
- Fast retrieval (< 50ms)
- Pattern recognition working
- Context maintained accurately evidence_based_techniques:
- Self-consistency validation
- Chain-of-verification
- Multi-agent consensus
metadata:
author: claude-flow
created: 2025-10-30
tags:
- agentdb
- memory
- persistence
- context-management
AgentDB Persistent Memory Patterns
Overview
Implement persistent memory patterns for AI agents using AgentDB - session memory, long-term storage, pattern learning, and context management for stateful agents, chat systems, and intelligent assistants.
SOP Framework: 5-Phase Memory Implementation
Phase 1: Design Memory Architecture (1-2 hours)
- Define memory schemas (episodic, semantic, procedural)
- Plan storage layers (short-term, working, long-term)
- Design retrieval mechanisms
- Configure persistence strategies
Phase 2: Implement Storage Layer (2-3 hours)
- Create memory stores in AgentDB
- Implement session management
- Build long-term memory persistence
- Setup memory indexing
Phase 3: Test Memory Operations (1-2 hours)
- Validate store/retrieve operations
- Test memory consolidation
- Verify pattern recognition
- Benchmark performance
Phase 4: Optimize Performance (1-2 hours)
- Implement caching layers
- Optimize retrieval queries
- Add memory compression
- Performance tuning
Phase 5: Document Patterns (1 hour)
- Create usage documentation
- Document memory patterns
- Write integration examples
- Generate API documentation
Quick Start
import { AgentDB, MemoryManager } from 'agentdb-memory';
// Initialize memory system
const memoryDB = new AgentDB({
name: 'agent-memory',
dimensions: 768,
memory: {
sessionTTL: 3600,
consolidationInterval: 300,
maxSessionSize: 1000
}
});
const memoryManager = new MemoryManager({
database: memoryDB,
layers: ['episodic', 'semantic', 'procedural']
});
// Store memory
await memoryManager.store({
type: 'episodic',
content: 'User preferred dark theme',
context: { userId: '123', timestamp: Date.now() }
});
// Retrieve memory
const memories = await memoryManager.retrieve({
query: 'user preferences',
type: 'episodic',
limit: 10
});
Memory Patterns
Session Memory
const session = await memoryManager.createSession('user-123');
await session.store('conversation', messageHistory);
await session.store('preferences', userPrefs);
const context = await session.getContext();
Long-Term Storage
await memoryManager.consolidate({
from: 'working-memory',
to: 'long-term-memory',
strategy: 'importance-based'
});
Pattern Learning
const patterns = await memoryManager.learnPatterns({
memory: 'episodic',
algorithm: 'clustering',
minSupport: 0.1
});
Success Metrics
- Memory persists across agent restarts
- Retrieval latency < 50ms (p95)
- Pattern recognition accuracy > 85%
- Context maintained with 95% accuracy
- Memory consolidation working
Additional Resources
- Full documentation: SKILL.md
- Process guide: PROCESS.md
- AgentDB Memory Docs: https://agentdb.dev/docs/memory
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
