Back to list
aiskillstore

agentdb-persistent-memory-patterns

by aiskillstore

Security-audited skills for Claude, Codex & Claude Code. One-click install, quality verified.

102🍴 3📅 Jan 23, 2026

SKILL.md


skill_id: when-implementing-persistent-memory-use-agentdb-memory name: agentdb-persistent-memory-patterns description: "Implement persistent memory patterns for AI agents using AgentDB - session memory, long-term storage, pattern learning, and context management for stateful agents, chat systems, and intelligent assistants" version: 1.0.0 category: agentdb subcategory: memory-management trigger_pattern: "when-implementing-persistent-memory" agents:

  • memory-coordinator
  • swarm-memory-manager
  • backend-dev complexity: intermediate estimated_duration: 6-8 hours prerequisites:
  • AgentDB basics
  • Memory management concepts
  • Database schema design outputs:
  • Persistent memory architecture
  • Session and long-term storage
  • Pattern learning system
  • Context management APIs validation_criteria:
  • Memory persists across sessions
  • Fast retrieval (< 50ms)
  • Pattern recognition working
  • Context maintained accurately evidence_based_techniques:
  • Self-consistency validation
  • Chain-of-verification
  • Multi-agent consensus metadata: author: claude-flow created: 2025-10-30 tags:
    • agentdb
    • memory
    • persistence
    • context-management

AgentDB Persistent Memory Patterns

Overview

Implement persistent memory patterns for AI agents using AgentDB - session memory, long-term storage, pattern learning, and context management for stateful agents, chat systems, and intelligent assistants.

SOP Framework: 5-Phase Memory Implementation

Phase 1: Design Memory Architecture (1-2 hours)

  • Define memory schemas (episodic, semantic, procedural)
  • Plan storage layers (short-term, working, long-term)
  • Design retrieval mechanisms
  • Configure persistence strategies

Phase 2: Implement Storage Layer (2-3 hours)

  • Create memory stores in AgentDB
  • Implement session management
  • Build long-term memory persistence
  • Setup memory indexing

Phase 3: Test Memory Operations (1-2 hours)

  • Validate store/retrieve operations
  • Test memory consolidation
  • Verify pattern recognition
  • Benchmark performance

Phase 4: Optimize Performance (1-2 hours)

  • Implement caching layers
  • Optimize retrieval queries
  • Add memory compression
  • Performance tuning

Phase 5: Document Patterns (1 hour)

  • Create usage documentation
  • Document memory patterns
  • Write integration examples
  • Generate API documentation

Quick Start

import { AgentDB, MemoryManager } from 'agentdb-memory';

// Initialize memory system
const memoryDB = new AgentDB({
  name: 'agent-memory',
  dimensions: 768,
  memory: {
    sessionTTL: 3600,
    consolidationInterval: 300,
    maxSessionSize: 1000
  }
});

const memoryManager = new MemoryManager({
  database: memoryDB,
  layers: ['episodic', 'semantic', 'procedural']
});

// Store memory
await memoryManager.store({
  type: 'episodic',
  content: 'User preferred dark theme',
  context: { userId: '123', timestamp: Date.now() }
});

// Retrieve memory
const memories = await memoryManager.retrieve({
  query: 'user preferences',
  type: 'episodic',
  limit: 10
});

Memory Patterns

Session Memory

const session = await memoryManager.createSession('user-123');
await session.store('conversation', messageHistory);
await session.store('preferences', userPrefs);
const context = await session.getContext();

Long-Term Storage

await memoryManager.consolidate({
  from: 'working-memory',
  to: 'long-term-memory',
  strategy: 'importance-based'
});

Pattern Learning

const patterns = await memoryManager.learnPatterns({
  memory: 'episodic',
  algorithm: 'clustering',
  minSupport: 0.1
});

Success Metrics

  • Memory persists across agent restarts
  • Retrieval latency < 50ms (p95)
  • Pattern recognition accuracy > 85%
  • Context maintained with 95% accuracy
  • Memory consolidation working

Additional Resources

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon