Back to list
adaptyvbio

rfdiffusion

by adaptyvbio

Claude Code skills for protein design

70🍴 7📅 Jan 23, 2026

SKILL.md


name: rfdiffusion description: > Generate protein backbones using RFdiffusion, a diffusion-based generative model for de novo protein structure generation. Use this skill when: (1) Designing binder scaffolds for a target protein, (2) Generating novel protein backbones from scratch, (3) Scaffolding functional motifs into new proteins, (4) Specifying hotspot residues for interface design, (5) Creating symmetric oligomers.

For sequence design after backbone generation, use proteinmpnn. For structure validation, use alphafold or chai. For QC thresholds, use protein-qc. license: MIT category: design-tools tags: [structure-design, diffusion, backbone, binder] proteinbase_slug: rfdiffusion proteinbase_url: https://proteinbase.com/design-methods/rfdiffusion biomodals_script: modal_rfdiffusion.py

RFdiffusion Backbone Generation

Prerequisites

RequirementMinimumRecommended
Python3.9+3.10
CUDA11.7+12.0+
GPU VRAM16GB24GB (A10G)
RAM16GB32GB

How to run

First time? See Installation Guide to set up Modal and biomodals.

# Clone biomodals
git clone https://github.com/hgbrian/biomodals && cd biomodals

# Basic binder design
modal run modal_rfdiffusion.py \
  --pdb target.pdb \
  --contigs "A1-150/0 70-100" \
  --hotspot "A45,A67,A89" \
  --num-designs 100

# With custom GPU/timeout
GPU=A100 TIMEOUT=60 modal run modal_rfdiffusion.py \
  --pdb target.pdb \
  --contigs "A1-150/0 70-100" \
  --num-designs 100

GPU: A10G (24GB) | Timeout: 30min default

Option 2: Local installation

# Clone and install
git clone https://github.com/RosettaCommons/RFdiffusion.git
cd RFdiffusion && pip install -e .

# Download weights
wget http://files.ipd.uw.edu/pub/RFdiffusion/models/Complex_base_ckpt.pt

# Run inference
python run_inference.py \
  inference.input_pdb=target.pdb \
  contigmap.contigs=[A1-150/0 70-100] \
  ppi.hotspot_res=[A45,A67,A89] \
  inference.num_designs=100

Config Schema (Hydra)

Contigmap Syntax

# De novo single chain (50-100 residues)
contigmap.contigs=[50-100]

# Binder + target (A = target chain, fixed with /0)
contigmap.contigs=[A1-150/0 70-100]

# Motif scaffolding (preserve residues, /0 = fixed)
contigmap.contigs=[20-40/0 A10-30/0 20-40]

# Multi-chain binder
contigmap.contigs=[A1-100/0 B1-100/0 60-80]

# Variable length ranges
contigmap.contigs=[A1-150/0 50-100]  # Binder 50-100 AA

Hotspot Specification

# Residues for interface (chain + resnum, no spaces)
ppi.hotspot_res=[A45,A67,A89]

Common mistakes

Contig Syntax

Correct:

contigmap.contigs=[A1-150/0 70-100]  # Target fixed (/0), binder variable

Wrong:

contigmap.contigs=[A1-150 70-100]    # Missing /0 - target will move!
contigmap.contigs="A1-150/0 70-100"  # Quotes break parsing
contigmap.contigs=[A1-150/0, 70-100] # Comma breaks parsing

Hotspot Residues

Correct:

ppi.hotspot_res=[A45,A67,A89]        # Chain letter + residue number

Wrong:

ppi.hotspot_res=[45,67,89]           # Missing chain letter
ppi.hotspot_res=[A45, A67, A89]      # Spaces break parsing
ppi.hotspot_res="A45,A67,A89"        # Quotes break parsing

Complete Parameter Reference

Core Parameters

ParameterDefaultRangeDescription
inference.num_designs101-10000Number of designs to generate
inference.input_pdb-pathTarget structure file
inference.output_prefixoutputstringOutput filename prefix
diffuser.T5020-200Diffusion timesteps
denoiser.noise_scale_ca1.00.0-2.0CA atom noise (0.5-0.8 = conservative)
denoiser.noise_scale_frame1.00.0-2.0Frame noise
inference.ckpt_override_path-pathModel checkpoint
potentials.guide_scale1.00.1-10Guidance strength
potentials.guide_decayconstantstringDecay type

Advanced Parameters

ParameterDefaultDescription
diffuser.partial_TNoneStart diffusion from timestep T (partial diffusion)
contigmap.inpaint_strNoneSequence positions to inpaint
scaffoldguided.scaffoldguidedfalseEnable scaffold-guided generation
scaffoldguided.target_pdbNoneScaffold template PDB
ppi.binderlenNoneSpecify exact binder length

Symmetry Parameters

ParameterDefaultDescription
symmetry.symmetryNoneSymmetry type (C2, C3, C4, D2, etc.)
symmetry.recentertrueRecenter symmetric assembly
symmetry.radiusNoneRadius constraint for symmetric assembly

Fold Conditioning

ParameterDefaultDescription
contigmap.provide_seqNoneProvide sequence for fold conditioning
contigmap.inpaint_seqNonePositions for sequence inpainting

Model Checkpoints

CheckpointUse Case
Complex_base_ckpt.ptBinder design (default)
Base_ckpt.ptDe novo monomers
ActiveSite_ckpt.ptActive site scaffolding
InpaintSeq_ckpt.ptSequence inpainting

Common workflows

Binder Design

  1. Prepare target PDB (trim to binding region + 10A buffer)
  2. Identify 3-6 hotspot residues (exposed, conserved)
  3. Generate 100-500 backbones
  4. Pass to proteinmpnn for sequence design

Motif Scaffolding

  1. Extract motif coordinates
  2. Use /0 to fix motif in contigmap
  3. Generate surrounding scaffold
  4. Validate motif preservation (RMSD < 1.5A)

Symmetric Oligomers

# C3 symmetric trimer
python run_inference.py \
  symmetry.symmetry=C3 \
  contigmap.contigs=[100-150] \
  inference.num_designs=50

# D2 symmetric tetramer
python run_inference.py \
  symmetry.symmetry=D2 \
  contigmap.contigs=[80-120] \
  symmetry.radius=25

# Supported symmetries: C2, C3, C4, C5, C6, D2, D3, D4, tetrahedral, octahedral

Partial Diffusion (Refinement)

# Start from existing structure, diffuse from timestep 10
python run_inference.py \
  inference.input_pdb=initial.pdb \
  diffuser.partial_T=10 \
  contigmap.contigs=[A1-100]

Output format

output/
├── output_0.pdb       # Generated backbone
├── output_1.pdb
├── ...
└── output_99.pdb

Each PDB contains polyalanine backbone - use proteinmpnn for sequence.

Sample output

Successful run

$ python run_inference.py inference.input_pdb=target.pdb contigmap.contigs=[A1-150/0 70-100] inference.num_designs=100
[INFO] Loading model from Complex_base_ckpt.pt
[INFO] Generating design 1/100...
[INFO] Generating design 50/100...
[INFO] Generating design 100/100...
[INFO] Saved 100 designs to output/

Generated:
output/output_0.pdb (85 residues)
output/output_1.pdb (92 residues)
...

What good output looks like:

  • File size: 3-8 KB per PDB (backbone only)
  • Residue count within specified range
  • Secondary structure visible in PyMOL (helices/sheets, not random coil)

Decision tree

Should I use RFdiffusion?
│
├─ Need to generate protein backbone?
│  ├─ Yes → Continue below
│  └─ No, already have backbone → Use ProteinMPNN
│
├─ What type of design?
│  ├─ Binder for protein target → RFdiffusion ✓
│  ├─ De novo monomer → RFdiffusion ✓
│  ├─ Motif scaffolding → RFdiffusion ✓
│  └─ Symmetric assembly → RFdiffusion ✓
│
└─ Priority?
   ├─ Need highest success rate → Consider BindCraft
   ├─ Need diversity/exploration → RFdiffusion ✓
   └─ Need all-atom precision → Consider BoltzGen

Typical performance

Campaign SizeTime (A10G)Cost (Modal)Notes
100 backbones20-30 min~$3Quick exploration
500 backbones1.5-2h~$12Standard campaign
1000 backbones3-4h~$25Large campaign

Expected downstream yield: ~10-15% of backbones pass full QC after sequence design + validation.


Verify

ls output/*.pdb | wc -l  # Should match num_designs

Troubleshooting

Designs lack secondary structure: Decrease noise_scale to 0.5-0.8 Binder not contacting hotspots: Verify residue numbering, increase num_designs OOM errors: Reduce batch size or use A100 GPU Slow generation: Reduce diffuser.T to 25-35

Error interpretation

ErrorCauseFix
RuntimeError: CUDA out of memoryGPU VRAM exceededUse A100 or reduce designs per batch
KeyError: 'A'Chain not found in PDBCheck chain IDs with grep ^ATOM target.pdb | cut -c22 | sort -u
ValueError: invalid contigSyntax error in contigsCheck for spaces, quotes, commas (see Common Mistakes)
FileNotFoundError: ckptMissing model weightsDownload from IPD website

Next: proteinmpnn for sequence design → structure prediction for validation → protein-qc for filtering.

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon