
proteinmpnn
by adaptyvbio
Claude Code skills for protein design
SKILL.md
name: proteinmpnn description: > Design protein sequences using ProteinMPNN inverse folding. Use this skill when: (1) Designing sequences for RFdiffusion backbones, (2) Redesigning existing protein sequences, (3) Fixing specific residues while designing others, (4) Optimizing sequences for expression or stability, (5) Multi-state or negative design.
For backbone generation, use rfdiffusion or bindcraft. For ligand-aware design, use ligandmpnn. For solubility optimization, use solublempnn. license: MIT category: design-tools tags: [sequence-design, inverse-folding] biomodals_script: modal_ligandmpnn.py
ProteinMPNN Sequence Design
Prerequisites
| Requirement | Minimum | Recommended |
|---|---|---|
| Python | 3.8+ | 3.10 |
| CUDA | 11.0+ | 11.7+ |
| GPU VRAM | 8GB | 16GB (T4) |
| RAM | 8GB | 16GB |
How to run
First time? See Installation Guide to set up Modal and biomodals.
Option 1: Local installation (recommended)
git clone https://github.com/dauparas/ProteinMPNN.git
cd ProteinMPNN
python protein_mpnn_run.py \
--pdb_path backbone.pdb \
--out_folder output/ \
--num_seq_per_target 16 \
--sampling_temp "0.1"
GPU: T4 (16GB) sufficient | Time: ~50-100 sequences/minute
Option 2: Modal (via LigandMPNN wrapper)
cd biomodals
modal run modal_ligandmpnn.py \
--pdb-path backbone.pdb \
--num-seq-per-target 16
Note: LigandMPNN includes ProteinMPNN functionality.
Config Schema
Core Parameters
| Parameter | Default | Range | Description |
|---|---|---|---|
--pdb_path | required | path | Single PDB input |
--pdb_path_chains | all | A,B | Chains to design (comma-sep) |
--out_folder | required | path | Output directory |
--num_seq_per_target | 1 | 1-1000 | Sequences per structure |
--sampling_temp | "0.1" | "0.0001-1.0" | Temperature (string!) |
--seed | 0 | int | Random seed |
--batch_size | 1 | 1-32 | Batch size |
Temperature Guide
0.1 -> Low diversity, high recovery (production)
0.2 -> Moderate diversity (default)
0.3 -> Higher diversity (exploration)
0.5+ -> Very diverse, lower quality
IMPORTANT: Temperature must be passed as a string, not float.
Common mistakes
Temperature Parameter
✅ Correct:
--sampling_temp "0.1" # String with quotes
❌ Wrong:
--sampling_temp 0.1 # Float without quotes - may cause errors
--sampling_temp 0.1,0.2 # Multiple temps need proper format
Fixed Positions JSONL
✅ Correct:
{"A": [1, 2, 3, 10, 11], "B": [5, 6]}
❌ Wrong:
{"A": "1,2,3,10,11"} # String instead of list
{A: [1, 2, 3]} # Missing quotes on key
{"A": [1,2,3,]} # Trailing comma
Chain Selection
✅ Correct:
--pdb_path_chains A,B # No spaces
❌ Wrong:
--pdb_path_chains A, B # Space after comma
--pdb_path_chains "A,B" # Quotes may cause issues
Amino Acid Biases
# Bias toward certain AAs (positive = favor)
--bias_AA_jsonl '{"A": {"A": 1.5, "W": -2.0}}'
# Omit specific AAs globally
--omit_AAs "CM" # No cysteine or methionine
# Per-position omission
--omit_AA_jsonl '{"A": {"1": "C", "2": "CM"}}'
Multi-Chain Design
# Design chains A and B together
--pdb_path_chains A,B
# Tie chains (same sequence)
--tied_positions_jsonl tied.jsonl
Variants Comparison
| Variant | Use Case | Key Difference |
|---|---|---|
| ProteinMPNN | General | Original model |
| SolubleMPNN | Expression | Trained on soluble proteins |
| LigandMPNN | Small molecules | Ligand-aware context |
Output format
output/
├── seqs/
│ └── backbone.fa # FASTA sequences
└── backbone_pdb/
└── backbone_0001.pdb # PDBs with designed sequence
FASTA Header Format
>backbone_0001, score=1.234, global_score=1.234, seq_recovery=0.85
MKTAYIAKQRQISFVKSHFSRQLE...
Common workflows
Binder Sequence Design
python protein_mpnn_run.py \
--pdb_path binder_backbone.pdb \
--out_folder output/ \
--num_seq_per_target 16 \
--sampling_temp "0.1" \
--pdb_path_chains B # Design binder chain only
Interface Redesign
# Fix core, design interface
python protein_mpnn_run.py \
--pdb_path complex.pdb \
--fixed_positions_jsonl core_positions.jsonl \
--num_seq_per_target 32
Multi-State Design
# Design for multiple conformations
python protein_mpnn_run.py \
--pdb_path_multi state1.pdb,state2.pdb \
--num_seq_per_target 16
Sample output
Successful run
$ python protein_mpnn_run.py --pdb_path backbone.pdb --out_folder output/ --num_seq_per_target 8
Loading model weights...
Designing sequences for backbone.pdb
Generated 8 sequences in 2.3 seconds
output/seqs/backbone.fa:
>backbone_0001, score=1.234, global_score=1.189, seq_recovery=0.82
MKTAYIAKQRQISFVKSHFSRQLEERGLTKE...
>backbone_0002, score=1.198, global_score=1.156, seq_recovery=0.79
MKTAYIAKQRQISFVKSQFSRQLDERGLTKE...
What good output looks like:
- Score: 1.0-2.0 (lower = more confident)
- Seq recovery: 0.3-0.6 for de novo, 0.7-0.9 for redesign
- Diverse sequences (not all identical) when temp > 0.1
Decision tree
Should I use ProteinMPNN?
│
├─ Have a backbone structure?
│ ├─ Yes → Continue below
│ └─ No → Use RFdiffusion first
│
├─ What's in the binding site?
│ ├─ Nothing / protein only → ProteinMPNN ✓
│ ├─ Small molecule / ligand → Use LigandMPNN
│ └─ Metal / cofactor → Use LigandMPNN
│
├─ Priority?
│ ├─ Solubility/expression → Consider SolubleMPNN
│ ├─ Speed → ProteinMPNN ✓
│ └─ AF2 optimization → Consider ColabDesign
│
└─ Need fixed positions?
├─ Yes → Use --fixed_positions_jsonl
└─ No → ProteinMPNN ✓ (design all)
Typical performance
| Campaign Size | Time (T4) | Cost (Modal) | Notes |
|---|---|---|---|
| 100 backbones × 8 seq | 15-20 min | ~$2 | Standard |
| 500 backbones × 8 seq | 1-1.5h | ~$8 | Large campaign |
| 1000 backbones × 16 seq | 3-4h | ~$18 | Comprehensive |
Throughput: ~50-100 sequences/minute on T4 GPU.
Verify
grep -c "^>" output/seqs/*.fa # Should match backbone_count × num_seq_per_target
Troubleshooting
Low sequence diversity: Increase sampling_temp to 0.2-0.3 Poor recovery: Decrease sampling_temp to 0.1 OOM errors: Reduce batch_size Unwanted cysteines: Use --omit_AAs "C"
Error interpretation
| Error | Cause | Fix |
|---|---|---|
RuntimeError: CUDA out of memory | Long protein or large batch | Reduce batch_size or use larger GPU |
KeyError: 'A' | Chain not in PDB | Check chain IDs in your PDB file |
JSONDecodeError | Invalid JSONL format | Validate JSON syntax (see Common Mistakes) |
IndexError: list index | Empty chain or residue list | Check PDB has atoms, not just HEADER |
Next: Structure prediction for validation → protein-qc for filtering.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
