Back to list
adaptyvbio

ligandmpnn

by adaptyvbio

Claude Code skills for protein design

70🍴 7📅 Jan 23, 2026

SKILL.md


name: ligandmpnn description: > Ligand-aware protein sequence design using LigandMPNN. Use this skill when: (1) Designing sequences around small molecules, (2) Enzyme active site design, (3) Ligand binding pocket optimization, (4) Metal coordination site design, (5) Cofactor binding proteins.

For standard protein design, use proteinmpnn. For solubility optimization, use solublempnn. license: MIT category: design-tools tags: [sequence-design, inverse-folding, ligand-aware] biomodals_script: modal_ligandmpnn.py

LigandMPNN Ligand-Aware Design

Prerequisites

RequirementMinimumRecommended
Python3.8+3.10
CUDA11.0+11.7+
GPU VRAM8GB16GB (T4)
RAM8GB16GB

How to run

First time? See Installation Guide to set up Modal and biomodals.

cd biomodals
modal run modal_ligandmpnn.py \
  --pdb-path protein_ligand.pdb \
  --num-seq-per-target 16 \
  --sampling-temp 0.1

GPU: T4 (16GB) | Timeout: 600s default

Option 2: Local installation

git clone https://github.com/dauparas/LigandMPNN.git
cd LigandMPNN

python run.py \
  --pdb_path protein_ligand.pdb \
  --out_folder output/ \
  --num_seq_per_target 16

Key parameters

ParameterDefaultRangeDescription
--pdb_pathrequiredpathPDB with ligand
--num_seq_per_target11-1000Sequences per structure
--sampling_temp"0.1""0.0001-1.0"Temperature (string!)
--ligand_mpnn_use_side_chain_contexttrueboolUse ligand context

Ligand Specification

In PDB File

Ligand must be present as HETATM records:

ATOM    ...protein atoms...
HETATM  1  C1  LIG A 999      x.xxx  y.yyy  z.zzz  1.00  0.00           C

Supported Ligand Types

  • Small molecules (HETATM)
  • Metals (Zn, Fe, Mg, Ca, etc.)
  • Cofactors (NAD, FAD, ATP)
  • DNA/RNA

Output format

output/
├── seqs/
│   └── protein.fa          # FASTA sequences
└── protein_pdb/
    └── protein_0001.pdb    # PDBs with designed sequence

Sample output

Successful run

$ python run.py --pdb_path enzyme_substrate.pdb --out_folder output/ --num_seq_per_target 8
Loading LigandMPNN model weights...
Processing enzyme_substrate.pdb
Found ligand: LIG (12 atoms)
Generated 8 sequences in 3.1 seconds

output/seqs/enzyme_substrate.fa:
>enzyme_substrate_0001, score=1.45, global_score=1.38
MKTAYIAKQRQISFVKSHFSRQLE...
>enzyme_substrate_0002, score=1.52, global_score=1.41
MKTAYIAKQRQISFVKSQFSRQLD...

What good output looks like:

  • Score: 1.0-2.0 (lower = more confident)
  • Ligand detected and incorporated in context
  • Active site residues preserved or optimized

Decision tree

Should I use LigandMPNN?
│
├─ What's in your binding site?
│  ├─ Small molecule / ligand → LigandMPNN ✓
│  ├─ Metal ion (Zn, Fe, etc.) → LigandMPNN ✓
│  ├─ Cofactor (NAD, FAD, ATP) → LigandMPNN ✓
│  ├─ DNA/RNA → LigandMPNN ✓
│  └─ Nothing / protein only → Use ProteinMPNN
│
├─ What type of design?
│  ├─ Enzyme active site → LigandMPNN ✓
│  ├─ Metal binding site → LigandMPNN ✓
│  ├─ Protein-protein binder → Use ProteinMPNN
│  └─ De novo scaffold → Use ProteinMPNN
│
└─ Priority?
   ├─ Solubility/expression → Consider SolubleMPNN
   └─ Ligand context accuracy → LigandMPNN ✓

Typical performance

Campaign SizeTime (T4)Cost (Modal)Notes
100 backbones × 8 seq15-20 min~$2Standard
500 backbones × 8 seq1-1.5h~$8Large campaign

Throughput: ~50-100 sequences/minute on T4 GPU.


Verify

grep -c "^>" output/seqs/*.fa  # Should match backbone_count × num_seq_per_target

Troubleshooting

Ligand not recognized: Check HETATM format, verify ligand residue name Poor binding residues: Increase sampling around active site Missing contacts: Verify ligand coordinates in PDB

Error interpretation

ErrorCauseFix
RuntimeError: CUDA out of memoryLong protein or large batchReduce batch_size
KeyError: 'LIG'Ligand not found in PDBCheck HETATM records
ValueError: no ligand atomsEmpty ligandVerify ligand has atoms in PDB

Next: Structure prediction for validation → protein-qc for filtering.

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon