Back to list
adaptyvbio

cell-free-expression

by adaptyvbio

Claude Code skills for protein design

70🍴 7📅 Jan 23, 2026

SKILL.md


name: cell-free-expression description: > Guidance for cell-free protein synthesis (CFPS) optimization. Use when: (1) Planning CFPS experiments, (2) Troubleshooting low yield or aggregation, (3) Optimizing DNA template design for CFPS, (4) Expressing difficult proteins (disulfide-rich, toxic, membrane). license: MIT category: experimental tags: [expression, cfps, validation]

Cell-Free Protein Synthesis (CFPS)

System Selection Guide

SystemBest ForYieldPTMsDisulfidesCost
E. coli extractRapid prototyping, prokaryotic proteinsHigh (100-400 μg/mL)NonePoor (reducing)Low
E. coli PUREDefined conditions, unnatural AAsMedium (50-150 μg/mL)NoneControllableHigh
Wheat germEukaryotic proteins, membrane proteinsHigh (100-500 μg/mL)LimitedModerateMedium
Rabbit reticulocyteMammalian proteins, post-translational studiesLow (10-50 μg/mL)SomePoorHigh
Insect (Sf21)Glycoproteins, complex foldsMedium (50-100 μg/mL)GlycosylationGoodHigh
HeLa/CHONative mammalian proteinsLow (10-50 μg/mL)Full mammalianGoodVery High

CFPS Troubleshooting Matrix

ProblemLikely CausesDesign FixReagent Fix
No expressionRare codons at N-terminus, poor RBSCodon optimize first 30 codonsUse BL21-CodonPlus extract
Low yieldStrong mRNA secondary structure, template issuesOptimize 5' UTR (ΔG > -5 kcal/mol)Increase Mg²⁺ (10-18 mM), ATP
AggregationHydrophobic protein, fast translationAdd solubility tags (MBP, SUMO)Add 0.1% Tween-20, chaperones
Inactive proteinMisfolding, missing cofactorsSlow translation (use rare codons!)Add GroEL/ES, DnaK/J
TruncationRare codon clusters, mRNA instabilityRemove AGG/AGA/CUA clustersSupplement rare tRNAs
DegradationProteolysisN-terminal Met-AlaAdd protease inhibitors

Codon Optimization for CFPS

Codons to Avoid in E. coli CFPS

CodonAmino AcidIssuetRNA Abundance
AGGArgVery rare, stalling0.2%
AGAArgVery rare, stalling0.4%
CUALeuLow abundance0.4%
AUAIleRare0.5%
CGAArgInefficient decoding0.6%
CCCProCan cause pausing0.5%
GGAGlyModerate1.1%

Design Rules

  1. First 30 codons: Most critical - use only high-frequency codons
  2. Rare codon clusters: Avoid 2+ rare codons within 10 nt
  3. Rare codon content: Keep overall <5% of coding sequence
  4. GC content: Target 40-60% for balanced expression
  5. Avoid runs: No >6 consecutive G or C residues (secondary structure)
  6. Strategic slow codons: Place rare codons between domains (aids folding!)

When to Use Rare Codons

  • Domain boundaries (allow cotranslational folding)
  • Before complex structural elements
  • When protein is prone to misfolding

mRNA Template Design

5' UTR Optimization

ElementOptimal DesignImpact
RBS (SD sequence)AGGAGG, 7-9 nt from startRibosome binding
Spacing7 nt between SD and AUGTranslation initiation
Secondary structureΔG > -5 kcal/molAccessibility
Upstream AUGAvoid (causes false starts)Reduces truncations

Secondary Structure Targets

RegionIdeal ΔGImpact
-30 to +30 around AUG> -5 kcal/molTranslation initiation
Full 5' UTR> -10 kcal/molRibosome loading
RBS accessibilityUnpairedCritical

Template Format

FormatAdvantagesDisadvantages
PlasmidStable, high yieldRequires cloning
Linear PCRFast, no cloningMay need stabilization
mRNADirect translationUnstable, expensive

Disulfide Bond Formation

System Capabilities

SystemNative Disulfide SupportAdditives Needed
Standard E. coli extractPoor (DTT present)IAM, PDI, GSSG/GSH
Oxidizing E. coli extractGoodPre-oxidized glutathione
Wheat germModerateLower DTT, add PDI
PURE systemMinimalFull oxidative system
Insect/MammalianGoodMicrosome membranes

Oxidative Folding Protocol (E. coli extract)

1. Deplete DTT from extract (dialysis or treatment with IAM 5 mM)
2. Add oxidized/reduced glutathione: 4 mM GSSG, 1 mM GSH (4:1 ratio)
3. Add 10 μM PDI (protein disulfide isomerase)
4. Optional: Add 5 μM DsbC (disulfide isomerase)
5. Express at 25°C (not 37°C) for better folding
6. Incubation time: 4-6 hours

Disulfide-Rich Protein Tips

  • Start with wheat germ or oxidizing extract
  • Use PURE system for precise control
  • Consider co-expression of PDI/DsbC
  • Verify by non-reducing SDS-PAGE

Expression Prediction from Sequence

FeatureGoodMarginalBad
Rare codon content<3%3-8%>10%
First 30 codons rare01-2>2
GC content45-55%35-45% or 55-65%<30% or >70%
5' UTR ΔG> -3 kcal/mol-3 to -8< -10 kcal/mol
Hydrophobic stretches<5 consecutive5-7>8 consecutive
N-terminal residueMet-Ala, Met-Ser, Met-GlyMet-Val, Met-ThrMet-Arg, Met-Lys
Cysteine pairsPaired (even number)MixedOdd number (free thiols)

Solubility Enhancement Strategies

Fusion Tags (ranked by effectiveness)

TagSizeSolubility EnhancementCleavageNotes
MBP40 kDaExcellentTEV, Factor XaBest overall
SUMO11 kDaVery GoodSUMO proteaseNative N-terminus after cleavage
NusA55 kDaExcellent-Large size
Trx12 kDaGoodEnterokinaseFor disulfide proteins
GST26 kDaModerate-Dimeric
His₆1 kDaMinimal-Mainly for purification

Buffer Additives for Solubility

AdditiveConcentrationMechanism
Trehalose50-100 mMChemical chaperone
Glycerol5-10%Reduces hydrophobic aggregation
L-Arginine50-100 mMSuppresses aggregation
Tween-200.05-0.1%Prevents surface adsorption
Proline50 mMOsmolyte stabilization

Chaperone Supplementation

Chaperone SystemTarget ProblemConcentration
GroEL/GroESGeneral folding1-2 μM
DnaK/DnaJ/GrpEAggregation-prone1 μM each
Trigger FactorNascent chain1-2 μM
ClpBAggregate resolubilization0.5 μM

Temperature Optimization

TemperatureUse CaseTrade-offs
37°CFast expression, stable proteinsHigher aggregation risk
30°CBalanced (default)Good compromise
25°CDisulfide proteins, complex foldsSlower, better folding
18-20°CAggregation-prone proteinsMuch slower, best folding
16°CCold-shock proteinsVery slow, specialized

E. coli Extract Preparation (Key Variables)

VariableImpactOptimal Range
Cell density at harvestRibosome contentOD₆₀₀ 2.5-3.5
Lysis methodExtract activitySonication, bead beating
Run-off reactionRemoves endogenous mRNA20-80 min at 37°C
Mg²⁺ concentrationTranslation fidelity10-18 mM
K⁺ concentrationTranslation rate150-200 mM
Energy systemSustained synthesisATP/GTP, creatine phosphate

PURE System Specifics

Advantages

  • Defined composition (no proteases/nucleases)
  • Linear DNA templates work well
  • Unnatural amino acid incorporation
  • Reproducible between batches

Limitations

  • No chaperones (add separately)
  • No post-translational modifications
  • Lower yields than crude extracts
  • Higher cost

When to Use PURE

  • Unnatural amino acid incorporation
  • Studying translation mechanisms
  • "Clean" proteins needed
  • Protease-sensitive targets
  • Linear template expression

Common Artifacts and Solutions

Low Molecular Weight Bands

Causes: Premature termination, proteolysis, internal initiation Solutions:

  • Optimize rare codon clusters
  • Add protease inhibitors
  • Check for internal AUG codons
  • Use PURE system

Higher MW Bands

Causes: Incomplete termination, read-through, aggregation Solutions:

  • Ensure strong stop codon (UAA preferred)
  • Check template 3' end
  • Add release factors (RF1/RF2)
  • Reduce protein concentration

No Soluble Protein

Causes: Aggregation during synthesis Solutions:

  • Lower temperature (25°C → 18°C)
  • Add chaperones
  • Use solubility tag
  • Optimize translation rate

References

CFPS Overview

Extract Preparation

PURE System

Wheat Germ

Codon Optimization

Disulfide Formation

Solubility Tags

Temperature Effects

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon