Back to list
adaptyvbio

campaign-manager

by adaptyvbio

Claude Code skills for protein design

70🍴 7📅 Jan 23, 2026

SKILL.md


name: campaign-manager description: > Goal-oriented binder design campaign planning and health assessment. Use this skill when: (1) Planning a complete binder design campaign, (2) Converting high-level goals into runnable pipelines, (3) Assessing campaign health and pass rates, (4) Diagnosing why designs are failing QC, (5) Estimating time, cost, and expected yields, (6) Selecting between design tools for a specific target.

This skill orchestrates the other protein design tools. For individual tool parameters, use the specific tool skills. license: MIT category: orchestration tags: [planning, campaign, coordination]

Campaign Manager

Goal-oriented design

From goal to pipeline

When user says: "I need 10 good binders for EGFR"

Campaign Planning:

Goal: 10 high-quality binders for EGFR
├── Achievable: Yes (standard target)
├── Recommended pipeline: rfdiffusion → proteinmpnn → colabfold → protein-qc
├── Estimated designs needed: 500 backbones (to get ~50 passing QC)
├── Estimated time: 8-12 hours total
├── Estimated cost: ~$60 (Modal GPU compute)
└── Expected yield:
    ├── After backbone (500): 500 structures
    ├── After sequence (×8): 4,000 sequences
    ├── After validation: 4,000 predictions
    ├── After QC (~10-15%): 400-600 candidates
    └── After clustering: 10-20 diverse final designs

Complete pipeline generator

Standard miniprotein binder campaign

# Step 1: Fetch and prepare target (5 min)
curl -o target.pdb "https://files.rcsb.org/download/{PDB_ID}.pdb"
# Trim to binding region if needed

# Step 2: Generate backbones (2-3h, ~$15)
modal run modal_rfdiffusion.py \
  --pdb target.pdb \
  --contigs "A1-150/0 70-100" \
  --hotspot "A45,A67,A89" \
  --num-designs 500

# Checkpoint: ls output/*.pdb | wc -l  # Should be 500

# Step 3: Design sequences (1-2h, ~$10)
for f in output/*.pdb; do
  modal run modal_proteinmpnn.py \
    --pdb-path "$f" \
    --num-seq-per-target 8 \
    --sampling-temp 0.1
done

# Checkpoint: grep -c "^>" output/seqs/*.fa  # Should be ~4000

# Step 4: Quick ESM2 filter (30 min, ~$5, optional)
modal run modal_esm.py --fasta output/all_seqs.fa --mode pll
# Filter sequences with PLL < 0.0

# Step 5: Structure validation (3-4h, ~$35)
modal run modal_colabfold.py \
  --input-faa output/filtered_seqs.fa \
  --out-dir predictions/

# Checkpoint: find predictions -name "*rank_001.pdb" | wc -l

# Step 6: Filter and rank (protein-qc skill)
# Apply thresholds: pLDDT > 0.85, ipTM > 0.5, scRMSD < 2.0
# Compute composite score
# Cluster at 70% identity, select top from each cluster

Total estimated time: 8-12 hours Total estimated cost: ~$60-70


Campaign size recommendations

GoalBackbonesSequences/BBTotal SeqExpected Passing
5 binders20081,600160-240
10 binders50084,000400-600
20 binders1,00088,000800-1,200
50 binders2,500820,0002,000-3,000

Rule of thumb: Generate 50x more designs than you need (10-15% pass rate × clustering).


Tool selection guide

When to use each tool

ScenarioRecommended ToolReason
Standard miniproteinRFdiffusion + ProteinMPNNHigh diversity, proven
Need higher success rateBindCraftIntegrated design loop
All-atom precision neededBoltzGenSide-chain aware
Difficult targetColabDesignAF2 gradient optimization
Need fast iterationESMFold + ESM2Quick screening

Target difficulty assessment

IndicatorEasy TargetDifficult Target
Surface typeConcave pocketFlat or convex
ConservationHighLow
Known bindersYesNo
FlexibilityRigidFlexible
Expected pass rate15-20%5-10%

Campaign health assessment

Quick metrics check

import pandas as pd

def assess_campaign(csv_path):
    df = pd.read_csv(csv_path)

    # Calculate pass rates
    plddt_pass = (df['pLDDT'] > 0.85).mean()
    iptm_pass = (df['ipTM'] > 0.50).mean()
    scrmsd_pass = (df['scRMSD'] < 2.0).mean()
    all_pass = ((df['pLDDT'] > 0.85) & (df['ipTM'] > 0.5) & (df['scRMSD'] < 2.0)).mean()

    # Determine health
    if all_pass > 0.15:
        health = "EXCELLENT"
    elif all_pass > 0.10:
        health = "GOOD"
    elif all_pass > 0.05:
        health = "MARGINAL"
    else:
        health = "POOR"

    # Identify top issue
    issues = []
    if plddt_pass < 0.20:
        issues.append("Low pLDDT - backbone or sequence issue")
    if iptm_pass < 0.20:
        issues.append("Low ipTM - hotspot or interface issue")
    if scrmsd_pass < 0.50:
        issues.append("High scRMSD - sequence doesn't specify backbone")

    return {
        "health": health,
        "overall_pass_rate": all_pass,
        "plddt_pass_rate": plddt_pass,
        "iptm_pass_rate": iptm_pass,
        "scrmsd_pass_rate": scrmsd_pass,
        "top_issues": issues
    }

Interpreting results

HealthPass RateAction
EXCELLENT> 15%Proceed to selection
GOOD10-15%Proceed, normal yield
MARGINAL5-10%Review failure tree
POOR< 5%Diagnose and restart

Cost estimation

Per-tool costs (Modal)

ToolGPU$/hourTypical JobCost
RFdiffusionA10G~$1.20500 designs/2h~$2.50
ProteinMPNNT4~$0.604000 seq/1.5h~$1.00
ESM2 (PLL)A10G~$1.204000 seq/30min~$0.60
ColabFoldA100~$4.504000 preds/4h~$18.00
ChaiA100~$4.50500 preds/1h~$4.50

Campaign cost estimates

Campaign SizeTotal CostNotes
Small (100 bb)~$15Quick exploration
Standard (500 bb)~$60Most campaigns
Large (1000 bb)~$120Comprehensive
XL (5000 bb)~$600Very thorough

Pipeline variants

High-throughput (maximize diversity)

# More backbones, fewer sequences each
modal run modal_rfdiffusion.py --num-designs 2000
modal run modal_proteinmpnn.py --num-seq-per-target 4 --sampling-temp 0.2

High-quality (maximize per-design quality)

# Fewer backbones, more sequences each, lower temperature
modal run modal_rfdiffusion.py --num-designs 200
modal run modal_proteinmpnn.py --num-seq-per-target 32 --sampling-temp 0.1

Quick exploration (fast iteration)

# Small batch, ESMFold instead of ColabFold
modal run modal_rfdiffusion.py --num-designs 50
modal run modal_proteinmpnn.py --num-seq-per-target 8
modal run modal_esmfold.py --fasta all_seqs.fa  # Faster than ColabFold

See also

  • Tool-specific parameters: rfdiffusion, proteinmpnn, colabfold, chai, boltz
  • QC thresholds and filtering: protein-qc
  • Tool selection guidance: binder-design

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon