
boltzgen
by adaptyvbio
Claude Code skills for protein design
SKILL.md
name: boltzgen description: > All-atom protein design using BoltzGen diffusion model. Use this skill when: (1) Need side-chain aware design from the start, (2) Designing around small molecules or ligands, (3) Want all-atom diffusion (not just backbone), (4) Require precise binding geometries, (5) Using YAML-based configuration.
For backbone-only generation, use rfdiffusion. For sequence-only design, use proteinmpnn. For structure validation, use boltz. license: MIT category: design-tools tags: [structure-design, sequence-design, diffusion, all-atom, binder] proteinbase_slug: boltzgen proteinbase_url: https://proteinbase.com/design-methods/boltzgen biomodals_script: modal_boltzgen.py
BoltzGen All-Atom Design
Prerequisites
| Requirement | Minimum | Recommended |
|---|---|---|
| Python | 3.10+ | 3.11 |
| CUDA | 12.0+ | 12.1+ |
| GPU VRAM | 24GB | 48GB (L40S) |
| RAM | 32GB | 64GB |
How to run
First time? See Installation Guide to set up Modal and biomodals.
Option 1: Modal (recommended)
# Clone biomodals
git clone https://github.com/hgbrian/biomodals && cd biomodals
# Run BoltzGen (requires YAML config file)
modal run modal_boltzgen.py \
--input-yaml binder_config.yaml \
--protocol protein-anything \
--num-designs 50
# With custom GPU
GPU=L40S modal run modal_boltzgen.py \
--input-yaml binder_config.yaml \
--protocol protein-anything \
--num-designs 100
GPU: L40S (48GB) recommended | Timeout: 120min default
Available protocols: protein-anything, peptide-anything, protein-small_molecule, nanobody-anything, antibody-anything
Option 2: Local installation
git clone https://github.com/HannesStark/boltzgen.git
cd boltzgen
pip install -e .
python sample.py config=config.yaml
Option 3: Python API
from boltzgen import BoltzGen
model = BoltzGen.load_pretrained()
designs = model.sample(
target_pdb="target.pdb",
num_samples=50,
binder_length=80
)
GPU: L40S (48GB) | Time: ~30-60s per design
Key parameters (CLI)
| Parameter | Default | Description |
|---|---|---|
--input-yaml | required | Path to YAML design specification |
--protocol | protein-anything | Design protocol |
--num-designs | 10 | Number of designs to generate |
--steps | all | Pipeline steps to run (e.g., design inverse_folding) |
YAML configuration
BoltzGen uses an entity-based YAML format where you specify designed proteins and target structures as entities.
Important notes:
- Residue indices use
label_seq_id(1-indexed), not author residue numbers - File paths are relative to the YAML file location
- Target files should be in CIF format (PDB also works but CIF preferred)
- Run
boltzgen check config.yamlto verify your specification before running
Basic Binder Config
entities:
# Designed protein (variable length 80-140 residues)
- protein:
id: B
sequence: 80..140
# Target from structure file
- file:
path: target.cif
include:
- chain:
id: A
# Specify binding site residues (optional but recommended)
binding_types:
- chain:
id: A
binding: 45,67,89
Binder with Specific Binding Site
entities:
- protein:
id: G
sequence: 60..100
- file:
path: 5cqg.cif
include:
- chain:
id: A
binding_types:
- chain:
id: A
binding: 343,344,251
structure_groups: "all"
Peptide Design (Cyclic)
entities:
- protein:
id: S
sequence: 10..14C6C3 # With cysteines for disulfide
- file:
path: target.cif
include:
- chain:
id: A
constraints:
- bond:
atom1: [S, 11, SG]
atom2: [S, 18, SG] # Disulfide bond
Design protocols
| Protocol | Use Case |
|---|---|
protein-anything | Design proteins to bind proteins or peptides |
peptide-anything | Design cyclic peptides to bind proteins |
protein-small_molecule | Design proteins to bind small molecules |
nanobody-anything | Design nanobody CDRs |
antibody-anything | Design antibody CDRs |
Output format
output/
├── sample_0/
│ ├── design.cif # All-atom structure (CIF format)
│ ├── metrics.json # Confidence scores
│ └── sequence.fasta # Sequence
├── sample_1/
│ └── ...
└── summary.csv
Note: BoltzGen outputs CIF format. Convert to PDB if needed:
from Bio.PDB import MMCIFParser, PDBIO
parser = MMCIFParser()
structure = parser.get_structure("design", "design.cif")
io = PDBIO()
io.set_structure(structure)
io.save("design.pdb")
Sample output
Successful run
$ modal run modal_boltzgen.py --input-yaml binder.yaml --protocol protein-anything --num-designs 10
Running: boltzgen run binder.yaml --output /tmp/out --protocol protein-anything --num_designs 10
[INFO] Loading BoltzGen model...
[INFO] Generating designs...
[INFO] Running inverse folding...
[INFO] Running structure prediction...
[INFO] Filtering and ranking...
[INFO] Pipeline complete
Results saved to: ./out/boltzgen/2501161234/
Output directory structure:
out/boltzgen/2501161234/
├── intermediate_designs/ # Raw diffusion outputs
│ ├── design_0.cif
│ └── design_0.npz
├── intermediate_designs_inverse_folded/
│ ├── refold_cif/ # Refolded complexes
│ └── aggregate_metrics_analyze.csv
└── final_ranked_designs/
├── final_10_designs/ # Top designs
└── results_overview.pdf # Summary plots
What good output looks like:
- Refolding RMSD < 2.0A (design folds as predicted)
- ipTM > 0.5 (confident interface)
- All designs complete pipeline without errors
Decision tree
Should I use BoltzGen?
│
├─ What type of design?
│ ├─ All-atom precision needed → BoltzGen ✓
│ ├─ Ligand binding pocket → BoltzGen ✓
│ └─ Standard miniprotein → RFdiffusion (faster)
│
├─ What matters most?
│ ├─ Side-chain packing → BoltzGen ✓
│ ├─ Speed / diversity → RFdiffusion
│ ├─ Highest success rate → BindCraft
│ └─ AF2 optimization → ColabDesign
│
└─ Compute resources?
├─ Have L40S/A100 (48GB+) → BoltzGen ✓
└─ Only A10G (24GB) → Consider RFdiffusion
Typical performance
| Campaign Size | Time (L40S) | Cost (Modal) | Notes |
|---|---|---|---|
| 50 designs | 30-45 min | ~$8 | Quick exploration |
| 100 designs | 1-1.5h | ~$15 | Standard campaign |
| 500 designs | 5-8h | ~$70 | Large campaign |
Per-design: ~30-60s for typical binder.
Verify
find output -name "*.cif" | wc -l # Should match num_samples
Troubleshooting
Verify config first: Always run boltzgen check config.yaml before running the full pipeline
Slow generation: Use fewer designs for initial testing, then scale up
OOM errors: Use A100-80GB or reduce --num-designs
Wrong binding site: Residue indices use label_seq_id (1-indexed), check in Molstar viewer
Error interpretation
| Error | Cause | Fix |
|---|---|---|
RuntimeError: CUDA out of memory | Large design or long protein | Use A100-80GB or reduce designs |
FileNotFoundError: *.cif | Target file not found | File paths are relative to YAML location |
ValueError: invalid chain | Chain not in target | Verify chain IDs with Molstar or PyMOL |
modal: command not found | Modal CLI not installed | Run pip install modal && modal setup |
Next: Validate with boltz or chai → protein-qc for filtering.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
